Secondary wave is the answer
Spurs are probably the result of <u>self-sustaining</u> <u>star formation.</u>
<h3>What is the formation of gaseous spurs in spiral galaxies?</h3>
The gigantic form of the magnificent doppelganger spiral patterns that spiral outward from the galactic cores gave spiral galaxies their name. These light arms of spiral galaxies are frequently seen in optical pictures to be speckled with bright star-forming areas at regular intervals.
Smaller structures spread forth and rearward into the interarm area from each major spiral arm. Spiral-arm also known as spurs are the name given to these substructures. Sometimes the spurs are also filled with star-forming clusters. As a consequence, we may draw the conclusion that spurs most likely emerge from self-sustaining star formation.
Learn more about the spiral galaxies here:
brainly.com/question/13956361
#SPJ11
Answer:
The square of the orbital period of a planet is directly proportional to the cube of the semimajor axis of its orbit.
Explanation:
hope this helps.
Answer:
16 cm
Explanation:
For protons:
Energy, E = 300 keV
radius of orbit, r1 = 16 cm
the relation for the energy and velocity is given by

So,
.... (1)
Now,

Substitute the value of v from equation (1), we get

Let the radius of the alpha particle is r2.
For proton
So,
... (2)
Where, m1 is the mass of proton, q1 is the charge of proton
For alpha particle
So,
... (3)
Where, m2 is the mass of alpha particle, q2 is the charge of alpha particle
Divide equation (2) by equation (3), we get

q1 = q
q2 = 2q
m1 = m
m2 = 4m
By substituting the values

So, r2 = r1 = 16 cm
Thus, the radius of the alpha particle is 16 cm.
Answer:
The unit of charge is the Coulomb (C), and the unit of electric potential is the Volt (V), which is equal to a Joule per Coulomb (J/C).
Explanation: