1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
3 years ago
6

Consider the image above and select the answer that best represents the skiers energy.

Physics
1 answer:
Masteriza [31]3 years ago
7 0

Answer:

I need an image, but if you're talking about Potential and Kinetic energy, I will determine for you:

Explanation:

Potential Energy: stored energy that depends upon the relative position of various parts of a system.

Kinetic Energy: the form of energy that an object or a particle has by reason of its motion.

Therefore, if the skier is on top of the mountain, they would have potential energy since their energy from the ground to the top of the surface is stored. But, if the skier is in motion/mid-air from the top of a mountain, their energy is kinetic (in motion) because their stored energy (potential) is released as they step off of the surface.

You might be interested in
Problem 4 A meteoroid is first observed approaching the earth when it is 402,000 km from the center of the earth with a true ano
Nikitich [7]

Answer:

Part a: The eccentricity is 1.086.

Part b: The altitude at closest approach is 5088 km

Part c: The velocity at perigee is 8.516 km/s

Part d: The turn angle is 134.08 while the aiming radius is 5641.28 km

Explanation:

<h2>Part a </h2>

Specific energy is given by

\epsilon=\frac{v^2}{2}-\frac{\mu}{r}

Here

  • ε is the specific energy
  • v is the velocity which is given as 2.23 km/s
  • μ is the gravitational constant whose value is 398600
  • r is the distance between earth and the meteorite which is 402,000 km

                         \epsilon=\frac{v^2}{2}-\frac{\mu}{r}\\\epsilon=\frac{2.2^2}{2}-\frac{398600}{402,000}\\\epsilon=1.495 km^2/s^2

Value of specific energy is also given as

\epsilon=\frac{\mu}{2a}\\a=\frac{\mu}{2\epsilon}\\a=\frac{398600}{2\times 1.495}\\a=13319 km

Orbit formula is given as

r=a(\frac{e^2-1}{1+ecos \theta})\\ae^2-recos\theta-(a+r)=0

Putting values in this equation and solving for e via the quadratic formula gives

ae^2-recos\theta-(a+r)=0\\(133319)e^2-(402000)(cos 150) e-(133319+402000)=0\\133319e^2+348142.21 e-535319=0\\\\e=\frac{-348142.21 \pm \sqrt{348142.21^2-4(133319)(535319)}}{2 (133319)}\\\\e=1.086 \, or \, -3.69

As the value of eccentricity cannot be negative so the eccentricity is 1.086.

<h2>Part b</h2>

The radius of trajectory at perigee is given as

r_p=a(e-1)\\

Substituting values gives

r_p=133319 (1.086-1)\\r_p=11465.4 km

Now for estimation of altitude z above earth is given as

z=r_p-R_E\\z=11465.4-6378\\z=5087.434\\z\approx 5088 km

So the altitude at closest approach is 5088 km

<h2>Part c</h2>

radius of perigee is also given as

r_p=\frac{h^2}{\mu}\frac{1}{1+e}

Rearranging this equation gives

h=\sqrt{r_p\mu(1+e)}\\h=\sqrt{11465.4 \times 3986000 \times (1+1.086)}\\h=97638.489 km^2/s

Now the velocity at perigee is given as

v_p=\frac{h}{r_p}\\v_p=\frac{97638.489}{11465.4}\\v_p=8.516 km/s\\

So the velocity at perigee is 8.516 km/s

<h2>Part d</h2>

Turn angle is given as

\delta =2 sin^{-1} (\frac{1}{e})

Substituting value in the equation gives

\delta =2 sin^{-1} (\frac{1}{e})\\\delta =2 sin^{-1} (\frac{1}{1.086})\\\delta =134.08

Aiming radius is given as

\Delta =a \sqrt{e^2-1}

Substituting value in the equation gives

\Delta =a \sqrt{e^2-1}\\\Delta =13319 \sqrt{1.086^2-1}\\\Delta=5641.28 km

So the turn angle is 134.08 while the aiming radius is 5641.28 km

3 0
4 years ago
Nvm figured it out 1!!!1!3!2!1!3!
Natali [406]

Answer:

that's great, good job!

6 0
3 years ago
Which model is defined atomic model that describes an atom has a spherical object containing a certain number of electrons trapp
victus00 [196]

Answer:

C! Raisin Bread

Hope this helps you!

4 0
3 years ago
Read 2 more answers
Two simple pendulums are in two different places. The length of the second pendulum is 0.4 times the length of the first pendulu
faltersainse [42]

Answer:

\sqrt{\frac{4}{9}}

Explanation:

The frequency of a simple pendulum is given by:

f=\frac{1}{2\pi}\sqrt{\frac{g}{L}}

where

g is the acceleration of gravity

L is the length of the pendulum

Calling L_1 the length of the first pendulum and g_1 the acceleration of gravity at the location of the first pendulum, the frequency of the first pendulum is

f_1=\frac{1}{2\pi}\sqrt{\frac{g_1}{L_1}}

The length of the second pendulum is 0.4 times the length of the first pendulum, so

L_2 = 0.4 L_1

while the acceleration of gravity experienced by the second pendulum is 0.9 times the acceleration of gravity experienced by the first pendulum, so

g_2 = 0.9 g_1

So the frequency of the second pendulum is

f_2=\frac{1}{2\pi}\sqrt{\frac{g_2}{L_2}}=\frac{1}{2\pi} \sqrt{\frac{0.9 g_1}{0.4 L_1}}

Therefore the ratio between the two frequencies is

\frac{f_1}{f_2}=\frac{\frac{1}{2\pi}\sqrt{\frac{g_1}{L_1}}}{\frac{1}{2\pi} \sqrt{\frac{0.9 g_1}{0.4 L_1}}}=\sqrt{\frac{0.4}{0.9}}=\sqrt{\frac{4}{9}}

8 0
3 years ago
A truck of mass 500kg moving at 4m/s collides with another truck of mass 1500kg moving in the same direction at 2m/s. What is th
VMariaS [17]

Answer:

m1u1+m2u2=(m1+m2)v.

500×4+1500×2=(500+1500)V.

2000+3000=2000V.

5000=2000V.

V=2.5m/s

8 0
3 years ago
Other questions:
  • Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consid
    7·1 answer
  • Understanding the benefits of an activity can __________.
    13·2 answers
  • What is happening to the energy of an apple as it falls from a tree?
    5·2 answers
  • Dormancy helps plants survive freezing temperatures and lack of..
    8·1 answer
  • A 69 g particle is moving to the left at 25 m/s . How much net work must be done on the particle to cause it to move to the righ
    6·1 answer
  • Name a radioactive gas that is released from the ground
    5·1 answer
  • What is the value of a conversion factor ratio?<br>A.1<br>B.3<br>C.10<br>D.12
    8·1 answer
  • A small coin of mass m1 is undergoing a uniform circular motion at a velocity v. The radius of the circular path is r. A piece o
    13·1 answer
  • What kind of mirror do u think s used in the side-view mirror of cars?
    9·1 answer
  • If a car is traveling forward at 15 m/s, how fast will it be going in 1.2 seconds if the acceleration is
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!