Answer:
The Forces of Flight
At any given time, there are four forces acting upon an aircraft.
These forces are lift, weight (or gravity), drag and thrust. Lift is
the key aerodynamic force that keeps objects in the air. It is the
force that opposes weight; thus, lift helps to keep an aircraft in
the air. Weight is the force that works vertically by pulling all
objects, including aircraft, toward the center of the Earth. In order
to fly an aircraft, something (lift) needs to press it in the opposite
direction of gravity. The weight of an object controls how strong
the pressure (lift) will need to be. Lift is that pressure. Drag is a
mechanical force generated by the interaction and contract of a
solid body, such as an airplane, with a fluid (liquid or gas). Finally,
the thrust is the force that is generated by the engines of an
aircraft in order for the aircraft to move forward.
Explanation:
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
Answer:
Say: Mars has a much weaker gravity effect than it does because it is smaller and cannot have as much gravity effect than it does on earth.
Explanation:
Answer:
Acceleration
Explanation:
Its speed or velocity change