Answer:
B) 20N.s is the correct answer
Explanation:
The formula for the impulse is given as:
Impulse = change in momentum
Impulse = mass × change in speed
Impulse = m × ΔV
Given:
initial speed = 40m/s
Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)
mass = 0.20 kg
Thus, we have
Impulse = 0.20 × (40m/s - (-60)m/s)
Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s
IV - Temperature
DV - Light intensity
Answer:
I feel it would be D. 120.00 I'm really not sure
Explanation:
Answer: 4.speed
Explanation:
In this case, we know that the cart remains at a constant 20km/h.
Now, one could say that "the velocity remains constant, because it always is 20km/h"
But remember that velocity is a vector, so this has a direction, and if the cart is going around a turn, then the direction of motion is changing, which tell us that there is acceleration.
But the module of the velocity, the speed, remains constant at 20km/h.
Then the correct option is 4, speed.
Distance, Force
<u>Explanation:</u>
1) Increasing the load will add to the friction on the bearings of the pulleys, thus reducing the efficiency of the system. The ideal mechanical advantage won't change since the ideal mechanical advantage ignores friction.
2) Increasing the number of pulleys will increase the ideal mechanical advantage, but because of friction it will decrease the efficiency. The more pulleys that are turning, the more friction there is, and the less efficient the system will be.
3) Work = force x distance, and what machines do is alter the amount of force you can apply while at the same time reducing the distance moved by the same factor. For instance, a jack multiplies the force you apply by a factor of 100, when you push down on the handle of the jack 100 cm, the car will only go up 1 cm. So the force x distance is the same 100 x force x 1/100 x distance.