I have a big house it had 5 floors and it has a pool with a slide and I have a silicone baby doll and y’all know that those things are extremely expensive like about I would say $1,499 dollars
Answer: 11.5 grams
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution
where,
Morality = 0.612 M
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the mass of copper (II)nitrate required is 11.5 grams
"High temperatures make the gas molecules move more quickly" is the one sentence among all the choices given in the question that most likely explains why this reaction is carried out at high temperature. The correct option among all the options that are given in the question is the third option or option "C".
Nuclear i believe because it has nucleus in the sentence and also talk about it
Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM