Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.
This is in the thermosphere which is at an altitude of 85-520km
Change in state(from liquid to solid) and change in colour I believe.
The strength of the electric field is 5 N/C
Explanation:
The magnitude of the electric field produced by a single-point charge is given by:

where
is the Coulomb's constant
Q is the magnitude of the charge
r is the distance from the charge
In this problem, we have:
is the charge producing the field
r = 100 m is the distance from the charge at which we want to calculate the field
Substituting into the equation, we find the s trength of the electric field:

Learn more about electric field:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
= 
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
= 2.348 N m²/C