Answer:
Q=1670J
Explanation:
Mass of ice: m=5g=0.005kg
Latent heat: lambda=3.34×10⁵J/kg
Heat received by ice: Q=m×lambda
Q=0.005×3.34×10⁵=5×334=1670J
Heat
required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
Heat = 1 kg (4.18 kJ / kg C)( 1 C)
<span>Heat = 4.18 kJ energy needed</span></span>
Answer:
air does not have a modulus of rigidity.
Explanation:
Since air is completely elastic medium, that is, it does not have a modulus of rigidity, therefore sound waves in air are longitudinal.
Answer: Decreasing the distance of the space shuttle from Earth .
Explanation:
According to expression of gravitational force:

G = gravitational constant
= masses of two objects
r = Distance between the two objects.
F = Gravitational force
From the above expression we can say that gravitational force is inversely proportional to squared of the distance between the two masses.

So, in order to increase the gravitational force on space shuttle distance between the space space shuttle must be decreased.
Hence, the correct answer 'decreasing the distance of the space shuttle from Earth '.
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees