When the temperature lowers the plants can freeze and die. One way to prevent that is to cover the plants so they dont freeze
Answer:
19320 kg/m³
Explanation:
density: This can be defined as the ratio of the mass of a body to its volume. The S.I unit of Density is kg/m³.
The formula of density is given as,
D = m/v ......................... Equation 1.
Where D = Density of the gold, m = mass of the gold, v = volume of the gold.
Note: From Archimedes's Principle, the piece of gold displace an amount of water that is equal to it's volume.
Amount of water displace = 27.2 - 25 = 2.2 mL.
Given: m = 42.504 g = 0.042504 kg, v = 2.2 mL = (2.2/10⁶) m³ = 0.0000022 m³
Substitute into equation 1
D = 0.042504/0.0000022
D = 19320 kg/m³
Hence the density of the piece of gold = 19320 kg/m³
200 MeV of energy
E1/E2=7.61=8
U is equal to 1 kilogram or 1000 g.
There are 6.02310 23 atoms in one mole, or 235 g, of uranium. Therefore, 6.02310 23 atoms are present in 1000 g of 92/235 U.
It is understood that one atom releases 200 MeV of energy during its fission.
As a result, the energy released from the fission of one kilogram of 92/235 is given by E 2 = 6.02310 23 1000200/235 =5.10610 26 MeV E1/E2=7.61=8
In light of this, the energy released during the fusion of one kilogram of hydrogen is roughly eight times greater than the energy generated during the fission of one kilogram of uranium.
To learn more about Fission please visit -
brainly.com/question/27923750
#SPJ1
Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
Answer:
A = (27.95 N, 21 N)
Explanation:
The polar co-ordinates are given as:
(r,θ) = (35 N, 37°)
Now, to convert this into polar co-ordinates (x, y), we will use following relations:
r² = x² + y²
(35)² = x² + y²
1225 = x² + y² ----------- equation (1)
and
tan θ = y/x
tan 37° = y/x
y = 0.753 x ------------------- equation (2)
Substituting this value in equation (1):
1225 = x² + (0.753 x)²
1225 = 1.567 x²
x² = 1225/1.567
x = √781.32
x = 27.95 N
using this value in equation (2)
y = (0.753)(27.95 N)
y = 21 N
Therefore, the vector can be represented in polar co-ordinates as:
<u>A = (27.95 N, 21 N)</u>