Answer:
The value is 
Explanation:
From the question we are told that
The magnitude of the horizontal force is 
The mass of the crate is 
The acceleration of the crate is 
Generally the net force acting on the crate is mathematically represented as

Here
is force of kinetic friction (in N) acting on the crate
So

=> 
Answer:

Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by

where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of
for 182 seconds. Then it brakes with a constant acceleration of
until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is

Our data is

Let's compute the first distance X1


Now, we find the speed at the end of the first period of time


That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0



Computing the second distance


The total distance is



Complete Question
Find the ratio of intensities in 4 different sets of red to violet spectral satellites in Raman scattering spectra of CCl4 molecules at T=27C temperature if corresponding resonant infrared frequencies (equivalent to frequencies of nuclei vibrations) of CCl4 molecule are 217, 315, 457 and 774 cm-1 . (Note: Wavenumber N in cm-1 is defined as
)
Answer:
The ratio of intensities is 
Explanation:
From the question we are told that
The number of sets of satellite is 
The temperature is 
The resonant infrared frequencies are 



From the question we see that the wave number also has a unit of
hence the value of the wave numbers of the molecule are



Generally intensity is mathematically represented as

Here we see that I varies inversely with wavelength i,.e
From the question we are told that the wave number is mathematically represented as

Therefore

This implies that the ratio of intensity in first set to that of second set to that of third set to that of fourth set is equal to the ratio of the wavenumber in the first set to that of the second set to that of third set to that of fourth
This is mathematically represented as

Substituting values

Answer:
It will require 14.715 N of force to hold the cartoon beneath the water.
Explanation:
Given the the volume of cartoon is 1.5 liters.
We need to find the force required to hold this cartoon beneath the water.
As we know from the Archimedes principle that the net force is equal to the volume of liquid displaced.
Given volume of the cartoon is 1.5 liters. So, 1.5 liters of water will be displaced.
And we know the density of the water is
. That is 
And 

So, it will require 14.715 N of force to hold 1.5 liter volume of cartoon beneath the water.
It would weaken the bones and thy would not be as strong or tough