Answer:
Approximately
.
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (
) is equal to
.
There are two half-reactions in this question.
and
. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of
should be positive.
In this case,
is positive only if
is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to
.
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
is the number moles of electrons transferred for each mole of the reaction. In this case the value of
is
as in the half-reactions.
is Faraday's Constant (approximately
.)
.
Answer:
Eletromagnetic radiation which is also known as visible light.
Explanation:
Answer:
Because of the speed of the sound.
Explanation:
The first thing that happens in such cases is to take into account the speed of the sound. First, we see that the player hits the ball with the bat, if we are in the stands far enough we will hear the sound of the batting time later, this time depends on the speed of the sound which is equal to 345 [m/s].
Another visible and practical example is a fireworks display, where people nearby immediately hear the explosion. while those at a great distance will be able to see first the explosion followed by the sound.
With the following equation, we can calculate how long it takes to hear a hit or explosion
t = x / v
where:
x = distance [m]
v = sound velocity = 345 [m/s]
t = time [s]
Answer:
11300 kgm3
Hope this helps
Think of it like a graph. You start at the origin which is (0,0). go three to the east which now you are (3,0). Then, six to the north. Now, you are at (3,6). 1 to the east, ((4,6). Then you go 4 to the west which is back tracking. So, you end at (0,6) which is saying you are now 6 km north from your campsite.
Hope this helps!