With a diameter that's 11 times larger than Earth's, Jupiter is the largest planet
Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.
<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get:
Air and water have a good day