Density is the ratio of a substance's mass to its volume. On the other hand, according to Archimedes' principle, the volume of water displaced is equal to the volume of the object placed on the water. Thus, the density of the metal is equal to 8.39 mL. So, the density would be
Density = 32.5 g/8.39 mL = 3.87 g/mL
<span>What we need to first do is split the ball's velocity into vertical and horizontal components. To do that multiply by the sin or cos depending upon if you're looking for the horizontal or vertical component. If you're uncertain as to which is which, look at the angle in relationship to 45 degrees. If the angle is less than 45 degrees, the larger value will be the horizontal speed, if the angle is greater than 45 degrees, the larger value will be the vertical speed. So let's calculate the velocities
sin(35)*18 m/s = 0.573576436 * 18 m/s = 10.32437585 m/s
cos(35)*18 m/s = 0.819152044 * 18 m/s = 14.7447368 m/s
Since our angle is less than 45 degrees, the higher velocity is our horizontal velocity which is 14.7447368 m/s.
To get the x positions for each moment in time, simply multiply the time by the horizontal speed. So
0.50 s * 14.7447368 m/s = 7.372368399 m
1.00 s * 14.7447368 m/s = 14.7447368 m
1.50 s * 14.7447368 m/s = 22.1171052 m
2.00 s * 14.7447368 m/s = 29.48947359 m
Rounding the results to 1 decimal place gives
0.50 s = 7.4 m
1.00 s = 14.7 m
1.50 s = 22.1 m
2.00 s = 29.5 m</span>
<span>to preserve foods, dye fabric, and DE-ice roads i hopes this helps
</span>
The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
Answer:
Explanation:
extension in the spring = 40.4 - 31.8 = 8.6 cm = 8.6 x 10⁻² m .
kx = mg
k is spring constant , x is extension , m is mass
k x 8.6 x 10⁻² = 7.52 x 9.8
k = 856.93 N/m
= 857 x 10⁻³ KN /m
b ) Both side is pulled by force of 188 N .
Tension in spring = 188N
kx = T
856.93 x = 188
x = .219.38 m
= 21.938 cm
= 21.9 cm .
length of spring = 31.8 + 21.9
= 53.7 cm .