The sphere has a constant potential. It is the electric field.

In the sphere, then

Outside the sphere, then

The elements of the electric field include

Which becomes,

<h3>
In a consistent electric field, is force constant?</h3>
Similar to an ordinary object in the uniform gravitational field near the Earth's surface, a charged item in a uniform electric field experiences a constant force and consequently experiences a uniform acceleration. The vector cross product of p and E determines the torque's direction.
If the charge is positive, the force either moves in the same direction as E or in the opposite direction (if charge is negative).
A torque is experienced by an electric dipole (p) in an even electric field (E). The vector cross product of p and E determines the torque's direction.
To learn more about uniform electric field, visit
brainly.com/question/17426130
#SPJ4
Answer:
Diagram A will reach the top first.
Explanation:
If it is going straight, it will go slower. The higher the movement speed the faster it is. Hope this helps!
A low-luminosity star has a small and narrow <u>habitable zone</u>, whereas a high-luminosity star has a large and wide one.
<h3>What is luminosity of a star?</h3>
The radiant power emitted by a light-emitting item over time is measured as luminosity, which is an absolute measure of radiated electromagnetic power (light).
The total quantity of electromagnetic energy released per unit of time by a star, galaxy, or other celestial object is referred to as luminosity in astronomy.
Learn more about low-luminosity star:
brainly.com/question/13912549
#SPJ4
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
Electromagnetic waves do not require a medium to travel through. They can travel through empty space or matter.