Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

A skateboarder flies horizontally off a cement planter. After a time of 3 seconds (Δt), he lands with a final velocity (v) of −4.5 m/s. Assuming the acceleration is -9.8 m/s² (a), we can calculate the initial velocity of the skateboarder (v₀) using the kinematic equation A.

Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

Learn more: brainly.com/question/4434106
Answer:
present
Explanation:
read doesn't change but write is in present tense
Answer:
Explanation:
In first case we are interested in one time 6 in six rolls
Thus probability = number of chances required/Total chances
= 1/6
Similarly in the second case probability = 2/12 = 1/6
In the same way in last case probability = 100/600 = 1/6
The probability is the same . Thus all the cases has equal chances
Answer:
3540.5N
Explanation:
Step one:
given data
mass m= 0.196kg
speed v= 31m/s
distance r= 5.32cm = 0.0532m
Step two
The expression relating force, mass, velocity and distance is
F= mv^2/r
substitute we have
F=0.196*31^2/0.0532
F=0.196*961/0.0532
F=188.356/0.0532
F=3540.5N
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height.
<span>In that particular situation, you can prove it like this: </span>
<span>initial velocity is Vo </span>
<span>launch angle is α </span>
<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>
<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>
<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>
<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>
<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>
<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>
<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>