Answer:
Explanation:
In the whole process , electric potential energy is converted into kinetic energy .
Kinetic energy = 3.83 MeV
= 3.83 x 1.6 x 10⁻¹⁶ J
= 6.128 x 10⁻¹⁶ J .
Let the closest distance of approach be r .
Electric potential energy = k Q q / r , Q is charge on nucleus , q is charge on alpha particle , r is closest distance .
Electric potential energy = 9 x 10⁹ x 79 x 1.6 x 10⁻¹⁹ x 2 x 1.6 x 10⁻¹⁹ / r
= 3640.32 x 10⁻²⁹ / r
So,
6.128 x 10⁻¹⁶= 3640.32 x 10⁻²⁹ / r
r = 3640.32 x 10⁻²⁹ / 6.128 x 10⁻¹⁶
= 594.05 x 10⁻¹³
= 59.405 x 10⁻¹²
= 59.405 pm .
Answer:
see below
Explanation:
this is because particles in solids are packed very closely together, thus , the particles collide with each other frequently and thus transfer of energy is faster. however, particles in liquid are closely packed but not as close as in solid so the particles do not collide as frequently. thus, transfer of energy slower than in solid. furthermore, the particles in gas are spaced far apart from each other, thus the particles don't collide with each other frequently, thus transfer of energy is very slow in gas.
hope you get it,
please mark
This means that there is same current flow in both the circuit, or the circuit one has twice the power of circuit two.
According to ohm's law, the resistance is given as
I=V/R
Since the circuit one has twice the voltage, and resistance
I1=I2
The hardest part of the job is to find the right formula to use, and write it down. You've already done that ! The rest is just turning the crank until an answer falls out.
You wrote. E = m g h.
Beautiful.
Now divide each side by (g h), and you'll have the formula for mass:
m = E / (g h).
You know all the numbers on the right side. Just pluggum in, do the arithmetic, and you'll have the mass.