<span>The work output of a machine divided by the work input is the "Efficiency" of the machine.
Hope this helps!</span>
<em>I'm sorry, it says check all that apply, however there are no choices given. You should edit, and add the multiple choice answers.</em>
My Answer:
Well if the masses of two objects were both decreased, it would result in a decrease in the gravitational force. So I guess the two objects masses would need to be decreased.
Answer:
As given that the car maintains a constant speed v as it traverses the hill and valley where both the valley and hill have a radius of curvature R.
(i) At point C, the normal force acting on the car is largest because the centripetal force is up. gravity is down and normal force is up. net force is up so magnitude of normal force must be greater than the car's weight.
(ii) At point A, the normal force acting on the car is smallest because the centripetal force is down. gravity is down and normal force is up. net force is up so magnitude of normal force must be less than car's weight.
(iii) At point C, the driver will feel heaviest because the driver's apparent weight is the normal force on her body.
(iv) At point A, the driver will feel the lightest.
(v)The car can go that much fast without losing contact with the road at A can be determined as follow:
Fn=0 - lose contact with road
Fg= mv²/r
mg=mv²/r
v=sqrt (gr)
Answer:
The new period will be √6 *T
Explanation:
period ,T=2π√(L/g) ................equation 1
where T is the period on earth
gravitational acceleration on the moon is g/6
T1 = 2π√[L/(g/6)]
T1=2π√(6L/g) ...............equation 2
divide equation 2 by 1
T1/T =2π√(6L/g)÷2π√(L/g)
T1/T =√(6L/L)
T1/T =√6
T1 = √6 *T
They PUBLISH !
They provide complete written, detailed, technical descriptions of their thoughts, hypotheses, experiments, data, and conclusions, in publications that are read by other scientists around the world.