Rational expectations theory suggests that the speed of adjustment Purcell correction would be very quick.
<h3>What Is Rational Expectations Theory?</h3>
The rational expectations theory is a widely used concept and modeling technique in macroeconomics. Individuals make decisions based on three primary factors, according to the theory: their human rationality, the information available to them, and their past experiences.
The rational expectations hypothesis was originally suggested by John (Jack) Muth 1 (1961) to explain how the outcome of a given economic phenomena depends to a certain degree on what agents expect to happen.
- People who have rational expectations always learn from their mistakes.
- Forecasts are unbiased, and people make decisions based on all available information and economic theories.
- People understand how the economy works and how government policies affect macroeconomic variables like the price level, unemployment rate, and aggregate output.
To learn more about Rational expectations theory from the given link
brainly.com/question/16479910
#SPJ4
Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.
Answer:
Be pushed away from each other.
Explanation:
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.