1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
3 years ago
13

A circuit has a voltage drop of 27 Vacross a 30 2 resistor that carries a

Physics
1 answer:
Dmitry [639]3 years ago
8 0

Answer:

A. 48.6 W

Explanation:

You might be interested in
Consider that 168.0 J of work is done on a system and 305.6 J of heat is extracted from the system. In the sense of the first la
Ilia_Sergeevich [38]

To solve this problem we must resort to the Work Theorem, internal energy and Heat transfer. Summarized in the first law of thermodynamics.

dQ = dU + dW

Where,

Q = Heat

U = Internal Energy

By reference system and nomenclature we know that the work done ON the system is taken negative and the heat extracted is also considered negative, therefore

W = -168J \righarrow  Work is done ON the system

Q = -305.6J \rightarrow Heat is extracted FROM the system

Therefore the value of the Work done on the system is -158.0J

3 0
3 years ago
A bug flying horizontally at 0.65 m/s collides and sticks to the end of a uniform stick hanging vertically. After the impact, th
irina [24]

The angular momentum is defined as,

L=I\omega

Acording to this text we know for conservation of angular momentum that

L_i=L_f

Where L_iis initial momentum

L_f is the final momentum

How there is a difference between the stick mass and the bug mass, we define that

Mass of the bug= m

Mass of the stick=10m

At the point 0 we have that,

L_i=mvl

Where l is the lenght of the stick which is also the perpendicular distance of the bug's velocity

vector from the point of reference (O), and ve is the velocity

At the end with the collition we have

L_f=(I_b+I_s)\omega

Substituting

L_f=(ml^2+\frac{10ml^2}{3})\omega

L_f=\frac{13}{10}ml^2w

m(0.65)l=\frac{13}{10}ml^2 \omega

\omega=\frac{1}{2l}

Applying conservative energy equation we have

\frac{1}{2}(I_b+I_s)\omega^2=mgh+10mgh'

\frac{1}{2}(ml^2+\frac{10ml^2}{3})(\frac{1}{2l})^2=mg(l-lcos\theta)+\frac{10}{2}mg(l-lcos\theta)

Replacing the values and solving

l=\frac{13}{0.54g}

Substituting

l=\frac{13}{0.54(9.8)}

l=2.45cm

7 0
3 years ago
A WLAN transmitter that emites a 100 mW signal is connected to a cable with a 3dB loss. If the cable is connected to an antenna
irakobra [83]

Answer: 24 dBm

Explanation:

in the attachment

6 0
3 years ago
A fluid flows through a pipe whose cross-sectional area changes from 2.00 m2 to 0.50 m2 . If the fluid’s speed in the wide part
borishaifa [10]

Answer:

v₂ = 7/ (0.5)= 14 m/s

Explanation:

Flow rate of the fluid

Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.

The formula for calculated the flow rate is:

Q= v*A Formula (1)

Where :

Q is the Flow rate (m³/s)

A is the cross sectional area of a section of the pipe (m²)

v is the speed of the fluid in that section (m/s)

Equation of continuity

The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:

Q₁= Q₂

Data

A₁ = 2m² : cross sectional area 1

v₁ = 3.5 m/s : fluid speed through A₁

A₂ = 0.5 m² : cross sectional area 2

Calculation of the fluid speed through A₂

We aply the equation of continuity:

Q₁= Q₂

We aply the equation of Formula (1):

v₁*A₁= v₂*A₂

We replace data

(3.5)*(2)= v₂*(0.5)

7 = v₂*(0.5)

v₂ = 7/ (0.5)

v₂ =  14 m/s

4 0
3 years ago
A radio wave transmits 38.5 W/m2 of power per unit area. A flat surface of area A is perpendicular to the direction of propagati
Margaret [11]

Answer:

P=2.57\times 10^{-7}\ N/m^2

Explanation:

Given that,

A radio wave transmits 38.5 W/m² of power per unit area.

A flat surface of area A is perpendicular to the direction of propagation of the wave.

We need to find the radiation pressure on it. It is given by the formula as follows :

P=\dfrac{2I}{c}

Where

c is speed of light

Putting all the values, we get :

P=\dfrac{2\times 38.5}{3\times 10^8}\\\\=2.57\times 10^{-7}\ N/m^2

So, the radiation pressure is 2.57\times 10^{-7}\ N/m^2.

3 0
3 years ago
Other questions:
  • Tyson Gay's best time to run 100.0 meters was 9.69 seconds. What was his average speed during this run, in miles per hour? (3.28
    15·2 answers
  • The diameter of a segment of an artery is reduced by a factor of two due to an obstruction. Assume that the flow is incompressib
    7·1 answer
  • A skateboarder shoots off a ramp with a velocity of 5.1 m/s, directed at an angle of 55° above the horizontal. The end of the ra
    7·1 answer
  • Which items in this picture provide insulation?
    11·1 answer
  • Anne should use a to transfer electric energy into motion. She should also use a to start and stop the flow of current.
    15·1 answer
  • Consider the following neutral electron configurations in which 'n' has a constant value. Which configuration would belong to th
    5·1 answer
  • Where in the body are nitrogen compounds found?
    5·2 answers
  • What TWO things do all vectors have?
    12·2 answers
  • Grade 8 Science Admin. May 2018 Released
    14·2 answers
  • IF YOUR GOOD AT SCIENCE THEN PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!