Answer:
-The battery-the power source
-Closed conducting loop
Explanation:
-To produce an electric current, the following requirements must be met:
-A battery-This is the energy source than will do work on the charge thus moving from a low energy location to high energy location.
-Closed Conducting Loop-The loop is usually made of copper wires due to their high electric conductivity.
Answer:
a) b) d)
Explanation:
The question is incomplete. The Complete question might be
In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly remain at rest? The forces applied are as follows: Check all that apply.
a)2 N; 2 N
b) 200 N; 200 N
c) 200 N; 201 N
d) 2 N; 2 N; 4 N
e) 2 N; 2 N; 2 N
f) 2 N; 2 N; 3 N
g) 2 N; 2 N; 5 N
h ) 200 N; 200 N; 5 N
For th object to remain at rest, sum of all forces must be equal to zero. Use minus sign to show opposing forces
a) 2+(-2)=0 here minus sign is to show the opposing firection of force
b) 200+(-200)=0
c) 200+(-201)
0
d) 2+2+(-4)=0
e) 2+2+(-2)
0
f) 2+2+(-3)
0; 2+(-2)+3
0
g) 2+2+(-5)
0; 2+(-2)+5
0
h)200 + 200 +(-5)
0; 200+(-200)+5
0
Just subsitute and easy
v=55m/s
m=100kg
KE=(0.5)(100kg)(55m/s)^2
KE=(50kg)(3025 m^2/s^2)
KE=151250 J
2nd option
The period of one full swing depends on the length of the pendulum and on gravity. The period of each full swing would be longer on the moon, with less gravity.
The rotation of the plane of the swings doesn't depend on the length of the string OR on gravity. It only depends on the latitude of the place where the pendulum hangs, and the rotation period of the body it's located on.
On Earth, it's (24 hours)/(sine of latitude).
On the moon, it would be (27.32 days)/(sine of latitude).
Answer:
distance = 21.56 m
Explanation:
given data
mass = 50 kg
initial velocity = 18.2 m/s
force = -200 N ( here force applied to opposite direction )
final velocity = 12.6 m/s
solution
we know here acceleration will be as
acceleration a = force ÷ mass
a =
= -4 m/s²
we get here now required time that is
required time =
...............1
put here value
required time =
so distance will be
distance =
........2
distance =
distance = 21.56 m