Answer:
the loss of energy due to the Joule effect is the cause of the non-ohmic characteristic of the bulb
Explanation:
A resistance is formed of some type of metal, in a light bulb it is Tungsten, which for low current is a resistance that complies with the ohm law.
When the value of the current is increased the shock of the electors creates a Joule effect, which heats the metal, these shocks are due to atomic imperfections of the structure, this heating creates a loss of energy of the system that causes the characteristic to be lost linear between the voltage and the current, since the total energy balance must be preserved.
An approximate measure of the energy that is emitted is given by Stefan's law.
In short, the loss of energy due to the Joule effect is the cause of the non-ohmic characteristic of the bulb
Answer:
The answer is
<h2>56,000 kgm/s</h2>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
m = 1400 kg
v = 40 m/s
We have
momentum = 1400 × 40
We have the final answer as
<h3>56,000 kgm/s</h3>
Hope this helps you
Answer:
<h2>0.056 W</h2>
Explanation:

From ohms law we know that
Given data
P1 = 0.5 Watt
P2 = ?
V1= 3 Volts
V2= 1 Volt
Thus we can solve for the power dissipated as follows


<em>The resistor will dissipate 0.056 Watt</em>
Answer:
Increase 9 times
Explanation:
We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant.
is the masses of the 2 objects. and R is the distance between them.
Since the force is inversely proportional to the distance squared, if it is reduced by 3 times, the gravitational force between them would increase by
times