<span>Balloons are blown up, and then rubbed against your shirt many times. The balloon then touches the ceiling. When released, the balloon remains stuck to the ceiling. The balloon is charged by contact. The ceiling has a neutral charge. The charged balloon induces a slight surface charge on the ceiling opposite to the charge on the balloon. Balloon and ceiling electric charges are opposite in sign, so they will attract each other. Since both the balloon and the ceiling are insulators, charge can not flow from one to the other. The charge on the balloon is fixed on the balloon and the charge on the ceiling remains fixed to the ceiling. It just so happens that the<span> electrostatic force the ceiling exerts on the balloon is sufficient to hold the balloon in place (i.e. overcomes gravity, etc.).</span></span>
Suppose that the cyclist begins his journey from the rest from the top of a wedge with a slope of a degree above the horizontal.
At point A (where it starts its journey), the energy is:
Ea = m * g * h
In other words, energy is only potential.
At point B (located at the bottom of the wedge), the energy is:
Eb = (1/2) * (m) * (v ^ 2)
In other words, the energy is only kinetic.
For energy conservation we have:
Ea = Eb
That is, we have that all potential energy is transformed into kinetic energy.
Which means that the cyclist has less kinetic energy at point A because that's where he has more potential energy.
answer:
the cyclist has less kinetic energy at point A because that's where he has more potential energy.
Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 
Incandescent lights get hot very quickly and therefore can easily burn u or catch fire
When rock rises<span>, they decrease in pressure causes </span>hot mantle rock<span> to melt and form magma. In plate tectonics, </span>divergent boundaries occur<span> when plates pull apart.</span>