Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer:
#See solution for details.
Explanation:
#The commutative property of multiplication tells us that it doesn't matter in what order you multiply numbers. The formula for this property is a * b = b * a:

Hence, the product of the four numbers remains 320,000 irrespective of their order.
Answer:
True because he is working his arms to lift and hold the weight
Explanation:
Answer:
a) Tբ = 151.8°C
b) ΔV = - 0.194 m³
c) The T-V diagram is sketched in the image attached.
Explanation:
Using steam tables,
At the given pressure of 0.5 MPa, the saturation temperature is the final temperature.
Right from the steam tables (A-5) with a little interpolation, Tբ = 151.793°C
b) The volume change
Using data from A-5 and A-6 of the steam tables,
The volume change will be calculated from the mass (0.58 kg), the initial specific volume (αᵢ) and the final specific volume
(αբ) (which is calculated from the final quality and the consituents of the specific volumes).
ΔV = m(αբ - αᵢ)
αբ = αₗ + q(αₗᵥ) = αₗ + q (αᵥ - αₗ)
q = 0.5, αₗ = 0.00109 m³/kg, αᵥ = 0.3748 m³/kg
αբ = 0.00109 + 0.5(0.3748 - 0.00109)
αբ = 0.187945 m³/kg
αᵢ = 0.5226 m³/kg
ΔV = 0.58 (0.187945 - 0.5226) = - 0.194 m³
c) The T-V diagram is sketched in the image attached
Answer:

Explanation:
Given
Airline flying at 34,000 ft.
Cabin pressurized to an altitude 8,000 ft.
We know that at standard condition ,density of air

We know that pressure difference
ΔP=ρ g ΔZ
Here ΔZ=34,000-8,000 ft
ΔZ=26,000 ft

ΔP=0.074 x 32.2 x 26,000

So pressure difference will be
.