Answer:
The answer to your question is given below
Explanation:
1. C. 2NaCl + I2 —> 2NaI + Cl2 => C. Single displacement.
From the above equation, we can see that I2 replaces Cl in NaCl to produce NaI. This is simply called a single displacement reaction.
2. E. 2C4H10 + 13O2 —> 8CO2 + 10H2O => E. Combustion.
The above equation shows the burning of Hydrocarbon in the presence of O2. This is simply called Combustion as CO2 and H2O is produced.
3. D 2H2O —> 2H2 + O2 => D. Decomposition.
From the above equation, we can see that a single compound H2O produces two elements H2 and O2. This is simply called a decomposition reaction.
4. A. ZnS + 2HCl —> ZnCl2 + H2S => A. Double Decomposition.
From the above equation, we can see that Cl replaces S in ZnS to produce ZnCl2 and S replaces Cl in HCl to produce H2S. This is simply called double displacement reaction.
5. B. H2 + Br2 —> 2HBr => B. Synthesis.
From the above equation, we can see that two element H2 and Br2 combine to produce a single compound HBr. This is simply called a synthesis reaction.
Answer:
The activation energy
Explanation:
The activation energy is the energy hump that lies between reactants and products. It is the energy barrier that reactants must cross before they are converted into products.
Based on the collision theory, only particles that possess the activation energy are able to collide in such a way that leads to reaction.
Collision of particles having an energy content less than the activation energy of the reaction merely leads to elastic collision between such particles.
The statement which best describes the law of conservation of mass is A) when a physical or a chemical change occurs, matter is not created or destroyed. The law states that matter cannot be created or destroyed by ordinary chemical or physical changes, which means that <span>the mass of all the components of a chemical reaction can be measured before and after the change in order prove that the mass is constant. So, keep in mind that </span><span>the mass of participating products is always the same as the mass of all the reactants.</span>
For the titration we use the equation,
M₁V₁ = M₂V₂
where M is molarity and V is volume. Substituting the known values,
(0.15 M)(43.2 mL) = (2)(M₂)(20.5 mL)
We multiply the right term by 2 because of the number of H+ in H2SO4. Calculating for M₂ will give us 0.158 M. Thus, the answer is approximately 0.16M.
31 protons 31 electrons and 39 nutrons