Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:

The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.
A conjugate acid is a conjugate base with hydrogen ions attached to it. In this case, the conjugate base is the carbonate ion, CO₃⁻². This ion can have two hydrogen ions, so the conjugate acid is:
H₂CO₃
This compound is known as carbonic acid.
Thomson's model of the atom was called the plum pudding model. He discovered electrons, so he placed them in the atoms. This was before the nucleus was discovered.
Now, the current model is an atom that contains a positively charged nucleus (with both protons and neutrons), and negatively charged orbitals with electrons.
Answer:

Explanation:
We can use Dalton's Law of Partial Pressures:
Each gas in a mixture of gases exerts its pressure separately from the other gases.
In other words, if a gas makes up 3.0 % of the atmosphere, its partial pressure is 3.0 % of the total pressure.
