Answer:
Part 1--Gastric acid
Part 2--one hundred times
Part 3--Baking Soda
Explanation:
Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>
Explanation:
Atomic radius decreases from left to right in a period.
Therefore Calcium would have a smaller atomic size.
<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.