Answer:
1) pure water
2) 0.75 m CaCl2
3) 1.0 m NaCl
4) 0.5 m KBr
5) 1.5 m glucose (C6H12O6)
Explanation:
Boiling point elevation is a colligative property. Coligative properties are properties that depend on the amount of solute present in the system. The boiling point of solvents increase due to the presence of solutes.
The boiling point elevation depends on the number of particles the solute forms in solution and the molality of the solute. The more the number of particles formed by the solute and the greater the molality of the solute, the greater the magnitude of boiling point elevation.
The order of decreasing hoping point elevation is;
1) 0.75 m CaCl2
2) 1.0 m NaCl
3) 0.5 m KBr
4) 1.5 m glucose (C6H12O6)
Beryllium is a chemical element with symbol Be and atomic number 4. It is a relatively rare element in the universe, usually occurring as a product of the spallation of larger atomic nuclei that have collided with cosmic rays.
When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J