Answer:
b) 3.10
Explanation:
HF ⇄ H
+ + F
Using Henderson-Hasselbalch Equation:
pH = pKa + log [A-]/[HA].
Where;
pKa = Dissociation constant = -log Ka
Hence, pKa of HF = -log 7.2 x 10^-4 = 3.14266
[A-] = concentration of conjugate base after dissociation = moles of base/total volume
= 0.15 x 0.3/0.8
= 0.05625 M
[HA] = concentration of the acid = moles of acid/total volume
= 0.10 x 0.5/0.8
= 0.0625 M
Note: <em>Total volume = 500 + 300 = 800 mL = 0.8 dm3</em>
pH = 3.14266 + log [0.05625/0.0625]
= 3.14267 + (-0.04575749056)
= 3.09691250944
<em>From all the available options below:</em>
<em>a) 2.97
</em>
<em>b) 3.10
</em>
<em>c) 3.19
</em>
<em>d) 3.22
</em>
<em>e) 3.32</em>
The correct option is b.
Answer:
Photosynthesis is the transformation of radiant energy to chemical energy. Plants take in water, carbon dioxide, and sunlight and turn them into glucose and oxygen. Called photosynthesis, one of the results of this process is that carbon dioxide is removed from the air.
Explanation:
Answer:
The answer is D
Explanation:
Although natural processes continually form fossil fuels, such fuels are generally classified as non-renewable resources because they take millions of years to form and the known viable reserves are being depleted much faster than new ones are being made. ... The use of fossil fuels raises serious environmental concerns.
BRAINLIEST PLZ
Answer:
See the answer below.
Explanation:
Fire has three major components:
- Heat
- Smoke
- Gases ( in form of CO, CO2 etc)
If the victim had died as a result of the fire, he/he would have inhaled smoke and hot gases from the fire. These components would have resulted in traces of burns and soot deposition in the trachea and lungs as well as traces of CO in the blood of the victim.
If the analysis of the victim's corpse does not reflect some of the results above, it can be effectively concluded that the victim has been dead before the fire.
<em>The single most important indicator of death by the fire would be the presence of CO in the blood of the victim's corpse. All others might be to a less significant degrees.</em>
Answer:
0.0249 moles in 1 g of Ca
Explanation:
Let's think in the molar mass of Ca.
Ca = 40.08 g/mol
So 1 mol weighs 40.08 grams, or in the opposite 40.08 grams is the weigh of 1 mol
The rule of three will be:
40.08 g are contained in 1 mol
1 g may be contained in (1 . 1) / 40.08 = 0.0249 moles