In order for the molecule to change phase from liquid to gas and evaporates, it needs to overcome the force from other molecules around it. as the force bigger evaporation gets harder. so e has the highest force and higher boiling point.
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>
The balanced chemical reaction is:
<span>3N2H4(l)→4NH3(g)+N2(g)
</span>
The amounts given for the N2H4 reactant will be the starting point for our calculations.
2.6mol N2H4 ( 4 mol NH3 / 3 mol N2H4 ) = 3.47 mol NH3
4.05mol N2H4 ( 4 mol NH3 / 3 mol N2H4 ) = 5.4 mol NH3
63.8g N2H4 <span>( 4 mol NH3 / 3 mol N2H4 ) = 85.07 mol NH3</span>
Answer:
16.53 pounds
Explanation:
this type of problem needs convertion method we need to convert from grams to pound.
Latent heat of melting is the energy that a solid absorbs to change its phase as its liquid. During this process, since all energy is used to change the phase, the temperature is constant.
Here the latent energy of melting for 1 g of ice is 80 calories and that 1 g of ice only absorbed 60 calories. hence the phase is not changed because it requires more 20 calories to melt.
Hence 1 g of ice remains as its solid phase (ice).