Answer:
36.55 J
Explanation:
PE = Potential energy
KE = Kinetic energy
TE = Total energy
The following data were obtained from the question:
Position >> PE >>>>> KE >>>>>> TE
1 >>>>>>>> 72.26 >> 27.74 >>>> 100
2 >>>>>>>> 63.45 >> x >>>>>>>> 100
3 >>>>>>>> 58.09 >> 41.91 >>>>> 100
The kinetic energy of the pendulum at position 2 can be obtained as follow:
From the table above, at position 2,
Potential energy (PE) = 63.45 J
Kinetic energy (KE) = unknown = x
Total energy (TE) = 100 J
TE = PE + KE
100 = 63.45 + x
Collect like terms
100 – 63.45 = x
x = 36.55 J
Thus, the kinetic energy of the pendulum at position 2 is 36.55 J.
Answer:An endothermic reaction
Explanation: In an endothermic reaction, it takes more energy to break the bonds of the reactants than is released when the bonds in the products are formed. In an endothermic reaction, the temperature goes down.
Answer:
carbon dioxide
Explanation:
carbon dioxide is the primary greenhouse gas produced by burning fossil fuels like coal and oil
The definition of the speed of light is exactly 299,792,458 meters per second, so to find how far it travels in a time period, multiply the speed of light times the time. Aka c=299,792,458m/s where c is speed of light, m is meters, and s is seconds. So for example to find how far light travels in 5 seconds, multiply by 5.
Answer:At the molecular level, the pressure of a gas depends on the number of collisions its molecules have with the walls of the container. If the pressure on the piston is doubled, the volume of the gas decreases by one-half. The gas molecules, now confined in a smaller volume, collide with the walls of the container twice as often and their pressure once again equals that of the piston.
Explanation: