Answer:
For
x
=
6
y
=
−
6
+
6
y
=
0
or
(
6
,
0
)
Second Point: For
y
=
4
y
=
−
4
+
6
y
=
2
or
(
4
,
2
)
We can next plot the two points on the coordinate plane:
graph{((x-6)^2+y^2-0.035)((x-4)^2+(y-2)^2-0.035)=0 [-10, 10, -5, 5]}
Now, we can draw a straight line through the two points to graph the line:
graph{(y+x-6)((x-6)^2+y^2-0.035)((x-4)^2+(y-2)^2-0.035)=0 [-10, 10, -5, 5]}
Step-by-step explanation:
Answer:
-1/2 (-2x + 4y)= x - 2y
Step-by-step explanation:
-1/2 (-2x + 4y)
x - 2y
The coordinates of the point can be solve using the fomula:
x = x1 + r( x2 - x1 )
y = y1 + r( y2 - x1)
where r is the ratio that partitions the segment
x = x1 + r( x2 - x1 )
x = 3 + 1/3( 8 - 3 )
x = 3 + 1/3( 5 )
x = 14/3
y = y1 + r( y2 - x1)
y = 2 + 1/3( 15 - 2)
y = 2 + 1/3( 13 )
y = 19/3
so the coordinate is ( 14/3 , 19/3 )
Answer: 12-n=25
-n=25-12
-n=13
Step-by-step explanation:
Use the sum-product pattern
2
−
−
1
2
x
2
−
x
−
12
x2−x−12
2
+
3
−
4
−
1
2
x
2
+
3
x
−
4
x
−
12
x2+3x−4x−12
2
Common factor from the two pairs
2
+
3
−
4
−
1
2
x
2
+
3
x
−
4
x
−
12
x2+3x−4x−12
(
+
3
)
−
4
(
+
3
)
x
(
x
+
3
)
−
4
(
x
+
3
)
x(x+3)−4(x+3)
3
Rewrite in factored form
(
+
3
)
−
4(+3)x
(x+3)−4(x+3)
x(x+3)−4(x+3)
(−4)(+3)
(x−4)(x+3)
(x−4)(x+3)