The initial velocity of the ball is 1.01 m/s
Explanation:
The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:
- A uniform horizontal motion with constant horizontal velocity
- A vertical accelerated motion with constant acceleration (
, acceleration due to gravity)
We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

where
s = 1.20 m is the vertical displacement (the height of the desk)
u = 0 is the initial vertical velocity

t is the time of flight
Solving for t,

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of
d = 0.50 m
in a time
t = 0.495 s
Therefore, since the horizontal velocity is constant, we can calculate it as

So, the ball rolls off the table at 1.01 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
3 seconds
Explanation:
Applying,
Applying,
v = u±gt................ Equation 1
Where v = final velocity, u = initial velocity, t = time, g = acceleration due to gravity.
From the question,
Given: v = 0 m/s ( at the maximum height), u = 30 m/s
Constant: g = -10 m/s
Substitute these values into equation 1
0 = 30-10t
10t = 30
t = 30/10
t = 3 seconds
Answer:
Unit of precision for force is the Newton.
Explanation:
It is the official unit used to describe force in science and mostly abbreviated with the symbol N.
Answer:
t = 36π seconds
Explanation:
For resolving this problem, we are going to consider a representative stadium of the United States. The Mercedes-Benz Stadium located in Atlanta, Georgia has an average radius of 90 m.
Then, its circumference measures:
L = 2πr
L = 2π(90)
L = 180π m
First, we estimate the wave's velocity: the average width of an person is 0.5 m, then the velocity is:
v = x/t
Where x: person's width
t: time
v = 0.5/0.1 = 5 m/s
The time required for the pulse to make one circuit around the stadium is:
t = x/v = 180π/5 = 36π seconds