The periodic sign of magnesium is ------> mg
Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
Answer:
Explanation:
We shall solve this problem on the basis of pinciple that water is incompressible so volume of flow will be equal at every point .
rate of volume flow of one stream
= cross sectional area x velocity
= 8.4 x 3.5 x 2.2 = 64.68 m³ /s
rate of volume flow of other stream
= 6.6 x 3.6 x 2.7
= 64.15 m³ /s
rate of volume flow of rive , if d be its depth
= 11.2 x d x 2.8
= 31.36 d
volume flow of river = Total of volume flow rate of two streams
31.36 d = 64.15 + 64.68
31.36 d = 128.83
d = 4.10 m /s .
Answer: 1.28 sec
Explanation:
Assuming that the glow following the collision was produced instantaneously, as the light propagates in a straight line from Moon to the Earth at a constant speed, we can get the time traveled by the light applying velocity definition as follows:
V = ∆x / ∆t
Solving for ∆t, we have:
∆t = ∆x/v = ∆x/c = 3.84 108 m / 3.8 108 m/s = 1.28 sec
Displacement = (distance between start and end points) in the direction of (direction from start to end point). Distance = (11.3-3.38)= 7.92 m. Direction = the negative 'x' direction.