Answer:

Explanation:
Let assume that cooling water works under a pressure of 1 atmosphere. The time required to boil half of the water is determined by the First Law of Thermodynamics:
![\dot Q \cdot \Delta t = m \cdot [c_{p,w}\cdot (T_{2}-T_{1})+h_{fg}]](https://tex.z-dn.net/?f=%5Cdot%20Q%20%5Ccdot%20%5CDelta%20t%20%3D%20m%20%5Ccdot%20%5Bc_%7Bp%2Cw%7D%5Ccdot%20%28T_%7B2%7D-T_%7B1%7D%29%2Bh_%7Bfg%7D%5D)
![\Delta t = \frac{m\cdot [c_{p,w}\cdot (T_{2}-T_{1})+h_{fg}]}{\dot Q}](https://tex.z-dn.net/?f=%5CDelta%20t%20%3D%20%5Cfrac%7Bm%5Ccdot%20%5Bc_%7Bp%2Cw%7D%5Ccdot%20%28T_%7B2%7D-T_%7B1%7D%29%2Bh_%7Bfg%7D%5D%7D%7B%5Cdot%20Q%7D)
![\Delta t = \frac{(2.25\times 10^{5}\,kg)\left[\left(4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C} \right)\cdot (100\,^{\textdegree}C - 10\,^{\textdegree}C)+2256.5\,\frac{kJ}{kg} \right]}{200000\,kW}](https://tex.z-dn.net/?f=%5CDelta%20t%20%3D%20%5Cfrac%7B%282.25%5Ctimes%2010%5E%7B5%7D%5C%2Ckg%29%5Cleft%5B%5Cleft%284.186%5C%2C%5Cfrac%7BkJ%7D%7Bkg%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D%20%5Cright%29%5Ccdot%20%28100%5C%2C%5E%7B%5Ctextdegree%7DC%20-%2010%5C%2C%5E%7B%5Ctextdegree%7DC%29%2B2256.5%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D%20%5Cright%5D%7D%7B200000%5C%2CkW%7D)

Answer:
HP = 27.08 hp
Explanation:
The complete question has a theoretical flow rate of 18.2 GPM. So, to find the input horsepower, we will use the following formula:
HP = QP/1714(E)
where,
HP = Input Horse Power = ?
Q = Volume Flow Rate in Gallons Per Minute (GPM) = 18.2 GPM
P = Outlet Pressure in psi = 2372 psi
E = Mechanical Efficiency = 0.93
Therefore,
HP = (18.2 GPM)(2372 psi)/(1714)(0.93)
<u>HP = 27.08 hp</u>
Answer:
Explanation:
A )
As the two bicycles come closer , the time period of oscillation of bee to oscillate between the two is gradually reduced . It is akin to a pendulum with gradually decreasing amplitude . It will be infinite number of trips the bee will travel before it gets squished .
B )
The bee will survive until the two bicyclists meet each other .
time of their meeting = distance between them / their relative velocity
= 20 / ( 10 + 10 )
= 1 hour .
C )
Total distance travelled by bee during 1 hour
= time x speed of bee
= 1 x 30 km/h
= 30 km .
Answer:
c, 280,000J
Explanation:
You should use the equation KE (Kinetic Energy) = 
m = 2500
v = 15
KE = 
KE = 281250 Joules.
This is consistent with the answer B, as all of the parameters given to you are rounded to 2 significant figures so naturally, the answer should also be rounded to 2 sig figs.
KE = 280,000 J
Answer:
a) y = 16.51 [m]
b) t = 1.83 [s]
Explanation:
To solve this problem we must use two kinematics equations, the first to determine the height to which the ball reaches, and the second equation to determine how long it lasts in the air.

where:
Vf = final velocity = 0
Vi = initial velocity = 18 [m/s]
g = gravity acceleration = 9.81[m/s^2]
t = time [s]
Note: the negative sign of the Equation indicates that the acceleration of gravity acts in the opposite direction to the movement of the ball. The final velocity is zero, since the ball reaches its maximum altitude when the velocity is zero.
Now replacing:
0 = (18)^2 - (2*9.81*y)
y = 16.51 [m]
b)

0 = 18 - (9.81*t)
t = 1.83 [s]