Answer:
<h3>The answer is 30.43 L</h3>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we are finding the new volume

From the question we have

We have the final answer as
<h3>30.43 L</h3>
Hope this helps you
Answer:
<em>a. The rock takes 2.02 seconds to hit the ground</em>
<em>b. The rock lands at 20,2 m from the base of the cliff</em>
Explanation:
Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.
The time taken by the object to hit the ground is calculated by:

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.
a,
The time taken by the rock to reach the ground is:


t = 2.02 s
The rock takes 2.02 seconds to hit the ground
b.
The range is calculated now:

d = 20.2 m
The rock lands at 20,2 m from the base of the cliff
KE = 1/ 2 * 1252 * 144
as KE = 1/2 * m * v ^2
= 90144 J
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.