Answer:
A: They produce a real image.
Explanation:
The images formed on the retina of the eye for a normal visibility must always be real.
Only a real image can be physically projected on any physical object whereas the virtual images are visible due to reflections.
- The nearsightedness is corrected with the help of a concave lens since it is the condition of the eye lens remaining thick and curved to converge the rays entering the eyes after a shorter distance which results in their image formation even before the retinal surface so to initially diverge them a bit so that they converge on the retinal surface and form the image there we use concave lens. Vice-versa of the above justification in the case of farsightedness.
Answer:
v = 14.35 m/s
Explanation:
As we know that crate is placed on rough bed
so here when pickup will take a turn around a circle then in that case the friction force on the crate will provide the necessary centripetal force on the crate
So here we have

here we have

now we know that

here we have

R = 35 m
g = 9.81 m/s/s
now plug in all values in above equation

Answer:
A.) 4 revolution
B.) 0.2 revolution
C.) 4 seconds
D.) 2.75 m/s
Explanation:
Given that a merry-go-round a.k.a "the spinny thing" is rotating at 15 RPM, and has a radius of 1.75 m
Solution
1 revolution = 2πr
Where r = 1.75m
A. How many revolutions will it make in 3 minutes?
(2π × 1.75) / 3
10.9955 / 3
3.665 RPM
Number of revolution = 15 / 3.665
Number of revolution = 4 revolution
B. How many revolutions will it make in 10.0 seconds?
First convert 10 seconds to minutes
10/60 = 0.167 minute
(2π × 1.75) / 0.167
10.9955 / 0.167
65.973
Number of revolution = 15 / 65.973
Number of revolution = 0.2 revolution
C. How long does it take for a person to make 1 complete revolution?
15 = 1 / t
Make t the subject of formula
t = 1/15
t = 0.0667 minute
t = 4 seconds
D. What is the velocity in m/s of person standing on its edge?
Velocity in m/ s will be:
Velocity = (15 × 2pi × r) / 60
Velocity = 164.9334 / 60
Velocity = 2.75 m/s
|acceleration| = (change in speed) / (time for the change)
= (10 m/s - 0) / (4 s)
= (10 / 4) (m/s²)
= 2.5 m/s² .
The direction of the acceleration is west.
The purpose of this lab is to determine whether the surface of an area would affect the coefficient of Friction. My classmates and I have learned a lot in this lab and that there could have been some errors in our lab because the strength of how a person pulls it might be a slight different than the normal force. I learned from this lab that the <span>surface area would have no effect on the coefficient of friction. </span>