G
has the SI units
m
3
k
g
⋅
s
2
The potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
<h3>
What is the energy in a capacitor?</h3>
The energy stored in a capacitor is an electrostatic potential energy.
It is related to the charge(Q) and voltage (V) between the capacitor plates.
It is represented as 'U'.
<h3>
How to determine the potential difference</h3>
Formula:
Potential difference, V is the ratio of the charge to the capacitance of a capacitor.
It is calculated using:
V = Q ÷ C
Where Q = charge 5 × 10∧-5C and C = capacitance 10∧-9
Substitute the values into the equation
Potential difference, V = 5 × 10∧-5 ÷ 10∧-9 = 5 × 10∧4 volts
<h3>
How to determine the energy stored</h3>
Formula:
Energy, U = 1 ÷ 2 (QV)
Where Q= charge and V = potential difference across the capacitor
Energy, U = 1 ÷ 2 ( 5 × 10∧-5 × 5 × 10∧4)
= 0.5 × 25 × 10∧-1
= 0.5 × 2.5
= 1. 25 Joules
Therefore, the potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
Learn more about capacitance here:
brainly.com/question/14883923
#SPJ1
Answer:
Planets were like gods.
Explanation:
To the people of many ancient civilizations, the planets were thought to be deities. Our names for the planets are the Roman names for these deities. For example, Mars was the god of war and Venus the goddess of love.
Explanation:
- Mass(m)= 20kg
- Acceleration (a)= 5m/s²
- Force(F)= ?
We know that,
Hence, the needed force is 100N.
In your question where the ask is to calculate the charge that the small sphere carries which is the mass of it is 441g moving at an acceleration of 13m/s^2 nad having and electric field of 5N/C. So the formula in getting the charge is mutliply the mass and the quotients of Acceleration and the Electric Field so the answer is 1,146.6