1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cloud [144]
2 years ago
8

Explain the costruction and working of windmill

Physics
1 answer:
fiasKO [112]2 years ago
6 0
A windmill produces wind without electricity. wind blows on a windmill and it and that’s how it produces wind. You can put a windmill in anywhere outdoors (ex. Deserts or plains)
—————————————————————


Hope this helped you:)
You might be interested in
Compare the friction force on the cart when it is rolling along the blacktop parking lot to the friction force on
Maksim231197 [3]
It is a lot rougher in the parking lot and smoother inside the grocery store
5 0
3 years ago
Read 2 more answers
In this experiment we will observe the magnetic fields produced by a current carrying wire. A long wire is suspended vertically,
Alisiya [41]

Answer:

See explanation

Explanation:

Solution:-

Electric current produces a magnetic field. This magnetic field can be visualized as a pattern of circular field lines surrounding a wire. One way to explore the direction of a magnetic field is with a compass, as shown by a long straight current-carrying wire in. Hall probes can determine the magnitude of the field. Another version of the right hand rule emerges from this exploration and is valid for any current segment—point the thumb in the direction of the current, and the fingers curl in the direction of the magnetic field loops created by it.

Compasses placed near a long straight current-carrying wire indicate that field lines form circular loops centered on the wire. Right hand rule 2 states that, if the right hand thumb points in the direction of the current, the fingers curl in the direction of the field. This rule is consistent with the field mapped for the long straight wire and is valid for any current segment.

( See attachments )

- The equation for the magnetic field strength - B - (magnitude) produced by a long straight current-carrying wire is given by the Biot Savart Law:

                                  B = \frac{uo*I}{2\pi *r}

Where,

I : The current,

r : The shortest distance to the wire,

uo : The permeability of free space. = 4π * 10^-7  T. m/A

-  Since the wire is very long, the magnitude of the field depends only on distance from the wire r, not on position along the wire. This is one of the simplest cases to calculate the magnetic field strength - B - from a current.

- The magnetic field of a long straight wire has more implications than one might first suspect. Each segment of current produces a magnetic field like that of a long straight wire, and the total field of any shape current is the vector sum of the fields due to each segment. The formal statement of the direction and magnitude of the field due to each segment is called the Biot-Savart law. Integral calculus is needed to sum the field for an arbitrary shape current. The Biot-Savart law is written in its complete form as:

                             B = \frac{uo*I}{4\pi }*\int\frac{dl xr}{r^2}      

Where the integral sums over,

 1) The wire length where vector dl = direction of current (in or out of plane)

 2) r is the distance between the location of dl and the location at which the magnetic field is being calculated

 3)  r^ is a unit vector in the direction of r.

   

3 0
3 years ago
The vertical columns in the periodic table are called _____________. families periods rows
bonufazy [111]

Answer:

families

Explanation:

periods are horizontal

4 0
3 years ago
Read 2 more answers
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x= 5.0 cos
lakkis [162]

Answer:

a)   x = 4.33 m ,   b)  w = 2 rad / s ,  f = 0.318 Hz ,  c) a = - 17.31 cm / s²,  

d) T =  3.15 s,  e)  A = 5.0 cm

Explanation:

In this exercise on simple harmonic motion we are given the expression for motion

          x = 5 cos (2t + π / 6)

they ask us for t = 0

a) the position of the particle

      x = 5 cos (π / 6)

      x = 4.33 m

remember angles are in radians

 

b) The general form of the equation is

          x = A cos (w t + Ф)

when comparing the two equations

         w = 2 rad / s

angular velocity and frequency are related

          w = 2π f

           f = w / 2π

           f = 2 / 2pi

           f = 0.318 Hz

c) the acceleration is defined by

      a == d²x / dt²

      a = - A w² cos (wt + Ф)

for t = 0 ,  we substitute

      a = - 5,0 2² cos (π / 6)

      a = - 17.31 cm / s²

d) El period is

          T = 1/f

         T= 1/0.318

         T =  3.15 s

e) the amplitude

        A = 5.0 cm

3 0
3 years ago
A child of mass 27 kg swings at the end of an elastic cord. At the bottom of the swing, the child's velocity is horizontal, and
snow_tiger [21]

Answer:

The magnitude of the rate of change of the child's momentum is 794.11 N.

Explanation:

Given that,

Mass of child = 27 kg

Speed of child in horizontal = 10 m/s

Length = 3.40 m

There is a rate of change of the perpendicular component of momentum.

Centripetal force acts always towards the center.

We need to calculate the magnitude of the rate of change of the child's momentum

Using formula of momentum

\dfrac{dp}{dt}=F

\dfrac{dP}{dt}=\dfrac{mv^2}{r}

Put the value into the formula

\dfrac{dP}{dt}=\dfrac{27\times10^2}{3.40}

\dfrac{dP}{dt}=794.11\ N

Hence, The magnitude of the rate of change of the child's momentum is 794.11 N.

7 0
3 years ago
Other questions:
  • The drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles
    11·1 answer
  • What are the methods of heat transfer? ​
    13·1 answer
  • Force that opposes motion between two surfaces
    14·1 answer
  • The gauge pressure inside an alveolus with a 200 µm radius is 25 mmHg, while the blood pressure outside is only 10 mmHg. Assumin
    13·1 answer
  • 7.22 Ignoring reflection at the air–water boundary, if the amplitude of a 1 GHz incident wave in air is 20 V/m at the water surf
    6·1 answer
  • A mass M tied to a light string is moving in a vertical circle. The tension in the string at the top is TT and TB at the bottom
    14·1 answer
  • Assume the equation x 5 At3 1 Bt describes the motion of a particular object, with x having the dimension of length and t having
    10·1 answer
  • List three different types of magnets
    14·2 answers
  • Answer for brainlest and 20 points
    13·1 answer
  • The 7.4 N weight is in equilibrium under
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!