Answer:
a) v = 1.075*10^7 m/s
b) FB = 7.57*10^-12 N
c) r = 10.1 cm
Explanation:
(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:
(1)
q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C
V: potential difference = 1.2*10^6 V
You replace the values of the parameters in the equation (1):

The kinetic energy of the particle is also:
(2)
m: mass of the particle = 6.64*10^⁻27 kg
You solve the last equation for v:

the sped of the alpha particle is 1.075*10^6 m/s
b) The magnetic force on the particle is given by:

B: magnitude of the magnetic field = 2.2 T
The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

the force exerted by the magnetic field on the particle is 7.57*10^-12 N
c) The particle describes a circumference with a radius given by:

the radius of the trajectory of the electron is 10.1 cm
ANSWER
C.
. newtons
EXPLANATION
According to Newton's second law,
, where
is the mass measured in kilograms.
and
is the acceleration in metres per second square.
We substitute these values to obtain,
.
We rearrange to get,
.
We multiply out the first two numbers and leave our answer in standard form to get,
.
The correct answer is C
Hi there!
We can begin by solving for the linear acceleration as we are given sufficient values to do so.
We can use the following equation:
vf = vi + at
Plug in given values:
4 = 9.7 + 4.4a
Solve for a:
a = -1.295 m/s²
We can use the following equation to convert from linear to angular acceleration:
a = αr
a/r = α
Thus:
-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.
Now, we can find the angular displacement using the following:
θ = ωit + 1/2αt²
We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:
v = ωr
v/r = ω
9.7/0.61 = 15.9 rad/sec
Plug into the equation:
θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad