Answer:
30.0g/mol
Explanation:
Step 1: Given data
- Pressure (P): 1 atm (standard pressure)
- Temperature (T): 273.15 K (standard temperature)
Step 2: Calculate the moles of the gas
We will use the ideal gas equation.

Step 3: Calculate the molar mass of the gas
4.16 × 10⁻³ moles correspond to a mass of 0.125 g. The molar mass of the gas is:

A chemical change changes the bonds by forming or breaking them, and cannot be brought back to it's original form.
b. milk souring
Missing question:
1) the rate of dissolving reaches zero
<span>2) the rate of crystallization reaches zero </span>
3) the rate of dissolving is zero and the rate of crystallization is greater than zero.
<span>4) both the rate of dissolving and the rate of crystallization are equal and greater than zero.
</span>
Answer is: 4) both the rate of dissolving and the rate of crystallization are equal and greater than zero.
Silver chloride (AgCl) dissolves and form silver and chlorine ions, in the same time silver and chlorine ions crystallizate and form solid salt silver chloride.
In equilibrium rates of dissolvinf and crysallization and concentration of ions do not change.
Answer:
V₂ = 0.62 L
Explanation:
Given data:
Initial volume = 2.4 L
Initial temperature = 25°C
Final temperature = -196°C
Final volume = ?
Solution:
Initial temperature = 25°C (25+273 = 298 K)
Final temperature = -196°C ( -196+273 = 77 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 2.4 L × 77 K / 298 k
V₂ = 184.8 L.K / 298 K
V₂ = 0.62 L