Light are transfer through waves in the atmosphere and yes it true that the darker the color is the more heat it could absorb thus it is also explain that the lighter the color is the less heat or light its absorb its because the light is bounces back through other form of light and it lessens the amount of heat in a substance. In Ryan's procedure the possible wrong that he done is the present of a green cotton glove. Green color are one of the color that bounces light and could not support the hypothesis of Ryan and the possible temperature he could get is not the accurate one.
Answer: The unpolarized light's intensity is reduced by the factor of two when it passes through the polaroid and becomes linearly polarized in the plane of the Polaroid. When the polarized light passes through the polaroid with the plane of polarization at an angle
with respect to the polarization plane of the incoming light, the light's intensity is reduced by the factor of
(this is the Law of Malus).
Explanation: Let us say we have a beam of unpolarized light of intensity
that passes through two parallel Polaroid discs with the angle of
between their planes of polarization. We are asked to find
such that the intensity of the outgoing beam is
. To solve this we follow the steps below:
Step 1. It is known that when the unpolarized light passes through a polaroid its intensity is reduced by the factor of two, meaning that the intensity of the beam passing through the first polaroid is

This beam also becomes polarized in the plane of the first polaroid.
Step 2. Now the polarized beam hits the surface of the second polaroid whose polarization plane is at an angle
with respect to the plane of the polarization of the beam. After passing through the polaroid, the beam remains polarized but in the plane of the second polaroid and its intensity is reduced, according to the Law of Malus, by the factor of
This yields
. Substituting from the previous step we get

yielding

and finally,

R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω
The force of gravity most likely
Answer:
A is the answer
Explanation:
That's why it ranges from big to small.