Answer:
W = m g h work that must be done on car
P = W / t power that must be input (in Watts)
P = m g h / t = 1500 kg * 9.8 m/s^2 * 360 m / 60 sec
P = 88,200 watts
P = 88,200 watts / 746 watts / hp = 118 hp
Answer: In a logical Pace forum subject to the distance
Explanation:
This is simply F=ma so 70N/30m/s^2 will give you the max mass which would be in kg, and the mass would be 2.333333kg a very light plane I might say
Answer:
On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

This means that the relation between the wavelength and the length of the string is

By definition, this standing wave is at the third harmonic, n = 3.
Furthermore, the standing wave equation is as follows:

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.


For this equation to be equal to zero, sin(59.94t) = 0. So,

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:

Answer:
The solution and the explanation are in the Explanation section.
Explanation:
According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:
TA = W * (a * cosθ)
The torque due to effort at C point is:
TC = E * (b * cosθ)
The net torque is equal to 0, we have:
Tnet = 0
W * (a * cosθ) - E * (b * cosθ) = 0

From the figure, you can observe that a/b < 1, thus E < W