I would think radon would be the most reactive.
Answer: the molarity of the solution in volumetric flask "B' is 0.0100 M
Explanation:
Given that;
the Molarity of stock solution M₁ = 1.25M
The molarity os solution in volumetric flask A (M₂) = M₂
Volume of stock solution pipet out (V₁) = 5.00mL
Volume of solution in volumetric flask A V₂ = 25.00mL
using the dilution formula
M₁V₁ = M₂V₂
M₂ = M₁V₁ / V₂
WE SUBSTITUTE
M₂ = ( 1.25 × 5.00 ) / 25.00 mL
M₂ = 0.25 M
Now volume of solution pipet out from volumetric flask A V₂ = 2.00 mL
Molarity of solution in volumetric flask B (M₃) = M₃
Volume of solution in volumetric flask B V₃ = 50.00m L
Using dilution formula again
M₂V₂ = M₃V₃
M₃ = M₂V₂ / V₃
WE SUBSTITUTE
M₃ = ( 0.25 × 2.0) / 50.0
M₃ = 0.0100 M
Therefore the molarity of the solution in volumetric flask "B' is 0.0100 M
Answer:
0.075
Explanation:
First obtain the mean of the measurement;
Mean = 10.15 + 9.95 + 9.99 + 10.02/4 = 10.03
Then obtain d^2= (mean-score)^2 for each score;
(10.15-10.03)^2 = 0.0144
(9.95-10.03)^2 = 0.0064
(9.99-10.03)^2 = 0.0016
(10.02-10.03)^2= 0.0001
∑d^2= 0.0144 + 0.0064 + 0.0016 + 0.0001
∑d^2= 0.0225
Variance = ∑d^2/N = 0.0225/4 = 0.005625
Standard deviation= √0.005625
Standard deviation= 0.075
Answer:
Fish
Explanation:
Because fish and why fish? because fish was one fish so i know this answer is 11
Answer:

Explanation:
We are given that 25 mL of 0.10 M
is titrated with 0.10 M NaOH(aq).
We have to find the pH of solution
Volume of 
Volume of NaoH=0.01 L
Volume of solution =25 +10=35 mL=
Because 1 L=1000 mL
Molarity of NaOH=Concentration OH-=0.10M
Concentration of H+= Molarity of
=0.10 M
Number of moles of H+=Molarity multiply by volume of given acid
Number of moles of H+=
=0.0025 moles
Number of moles of
=0.001mole
Number of moles of H+ remaining after adding 10 mL base = 0.0025-0.001=0.0015 moles
Concentration of H+=
pH=-log [H+]=-log [4.28
]=-log4.28+2 log 10=-0.631+2
