Adding oxygen will cause the equation of
CO-Hemogoblin + O2= Hemogoblin = Oxyhemogoblin
to the right. This is because the increase in pressure leads to more on the left side, and as such a balance needs to be maintained so the equation shifts to the right.
x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work
Answer:
C.
Explanation:
It’s particle boiling point because the atoms are moving fast around the particle as possible, so there for its C..