Answer: A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions.
Explanation:
A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions.
Explanation:
The chart below shows monatomic ions formed when an atom loses or gains one or more electrons, and the ionic compounds they form. You can check your periodic table to see that the cations are monatomic ions formed from metals, and the anions are monatomic ions formed from nonmetals.
Fireworks owe their colors to reactions of combustion of the metals present. When Mg and Al burn, they emit a white bright light, whereas iron emits a gold light. Besides metals, oxygen is necesary for the combustion. The decomposition reactions of barium nitrate and potassium chlorate provide this element. At the same time, barium can burn emitting a green light.
(a) Barium nitrate is a <em>salt</em> formed by the <em>cation</em> barium Ba²⁺ and the <em>anion</em> nitrate NO₃⁻. Its formula is Ba(NO₃)₂. Potassium chlorate is a <em>salt</em> formed by the <em>cation</em> potassium K⁺ and the <em>anion</em> chlorate ClO₃⁻. Its formula is KClO₃.
(b) The balanced equation for the decomposition of potassium chloride is:
2KClO₃(s) ⇄ 2KCl(s) + 3O₂(g)
(c) The balanced equation for the decomposition of barium nitrate is:
Ba(NO₃)₂(s) ⇄ BaO(s) + N₂(g) + 3O₂(g)
(d) The balanced equations of metals with oxygen to form metal oxides are:
- 2 Mg(s) + O₂(g) ⇄ 2 MgO(s)
- 4 Al(s) + 3 O₂(g) ⇄ 2 Al₂O₃(s)
- 4 Fe(s) + 3 O₂(g) ⇄ 2 Fe₂O₃(s)
Explanation:
As it is given that solubility of water in diethyl ether is 1.468 %. This means that in 100 ml saturated solution water present is 1.468 ml.
Hence, amount of diethyl ether present will be calculated as follows.
(100ml - 1.468 ml)
= 98.532 ml
So, it means that 98.532 ml of diethyl ether can dissolve 1.468 ml of water.
Hence, 23 ml of diethyl ether can dissolve the amount of water will be calculated as follows.
Amount of water = 
= 0.3427 ml
Now, when magnesium dissolves in water then the reaction will be as follows.

Molar mass of Mg = 24.305 g
Molar mass of
= 18 g
Therefore, amount of magnesium present in 0.3427 ml of water is calculated as follows.
Amount of Mg =
= 0.462 g
Answer:
Model
Explanation:
A model of anything is something you make to represent it in it's physical world form
No because they can be seperated differently