Answer:
44.91% of Oxygen in Iron (III) hydroxide
Explanation:
To solve this question we must find the molar mass of Fe(OH)3 and the molar mass of the oxygen in this molecule. Percent composition will be:
<em>Molar mass Oxygen / molar mass Fe(OH)3 * 100</em>
<em />
<em>Molar mass Fe(OH)3 and oxygen:</em>
1Fe = 55.845g/mol*1 = 55.845
3O = 16.00g/mol*3 = 48.00 - Molar mass of Oxygen
3H = 1.008g/mol*3 = 3.024
55.845 + 48.00 + 3.024 =
106.869g/mol is molar mass of Fe(OH)3
% Composition of oxygen is:
48.00g/mol / 106.869g/mol * 100 =
<h3>44.91% of Oxygen in Iron (III) hydroxide</h3>
Answer:
Open spaces in water's solid structure makes its solid state less dense than its liquid state.
Explanation:
- Water unlike other liquids is special. It contracts when cooled, down to a temperature of 4°C but thereafter begins to expand as it reaches 0°C and turns into ice.
- This property is useful for the preservation of marine life in very cold temperatures. During winter, the surface water in water lakes and rivers starts cooling. Upon reaching the temperature of 4°C, the surface water descends to the bottom as it denser.
- This help in the maintenance of temperature of the water at the bottom at 4°C. It is in this layer that marine life is sustained.
Educated Guess Here!
Since Br-80 does not exist, maybe that means Br-79 or Br-81 have very unequal abundances. For example, Br-79 may have 75% abundance whereas Br-81 may have 25% abundance.
Answer : The volume of hydrogen gas at STP is 4550 L.
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 100.0 atm
= final pressure of gas at STP = 1 atm
= initial volume of gas = 50.0 L
= final volume of gas at STP = ?
= initial temperature of gas = 
= final temperature of gas at STP = 
Now put all the given values in the above equation, we get:


Therefore, the volume of hydrogen gas at STP is 4550 L.