1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
3 years ago
9

How much heat is needed to raise the temperature of 50.0 g of water by 25.0°C

Physics
2 answers:
sladkih [1.3K]3 years ago
4 0

Answer:10.5 kJ

Explanation:

In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as

   c=4.18Jg∘C

Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.

Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.

In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.

What if you wanted to increase the temperature of 1 g of water by 2∘C ? You'd need to provide it with

   increase by 1∘C4.18 J+increase by 1∘C4.18 J=increase by 2∘C2×4.18 J

To increase the temperature of 1 g of water by n∘C, you'd need to supply it with

   increase by 1∘C4.18 J+increase by 1∘C4.18 J+ ... =increase by n∘Cn×4.18 J

Now let's say that you wanted to cause a 1∘C increase in a 2-g sample of water. You'd need to provide it with

   for 1 g of water4.18 J+for 1 g of water4.18 J=for 2 g of water2×4.18 J

To cause a 1∘C increase in the temperature of m grams of water, you'd need to supply it with

   for 1 g of water4.18 J+for 1 g of water4.18 J+ ,,, =for m g of waterm×4.18 J

This means that in order to increase the temperature of m grams of water by n∘C, you need to provide it with

   heat=m×n×specific heat

This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gram by n∘C, of the third gram by n∘C, and so on until you reach m grams of water.

And there you have it. The equation that describes all this will thus be

   q=m⋅c⋅ΔT , where

q - heat absorbed

m - the mass of the sample

c - the specific heat of the substance

ΔT - the change in temperature, defined as final temperature minus initial temperature

In your case, you will have

   q=100.0g

⋅4.18Jg∘C⋅(50.0−25.0)∘C

   q=10,450 J

Rounded to three sig figs and expressed in kilojoules, the answer will be

   10,450J

⋅1 kJ103J=10.5 kJ

love history [14]3 years ago
3 0

Answer:

Explanation:

In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as

c

=

4.18

J

g

∘

C

Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.

Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of

1 g

of that substance by

1

∘

C

.

In water's case, you need to provide

4.18 J

of heat per gram of water to increase its temperature by

1

∘

C

.

What if you wanted to increase the temperature of

1 g

of water by

2

∘

C

? You'd need to provide it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

=

increase by 2

∘

C



2

×

4.18 J

To increase the temperature of

1 g

of water by

n

∘

C

, you'd need to supply it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

+

...

=

increase by n

∘

C



n

×

4.18 J

Now let's say that you wanted to cause a

1

∘

C

increase in a

2-g

sample of water. You'd need to provide it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

=

for 2 g of water



2

×

4.18 J

To cause a

1

∘

C

increase in the temperature of

m

grams of water, you'd need to supply it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

+

,,,

=

for m g of water



m

×

4.18 J

This means that in order to increase the temperature of

m

grams of water by

n

∘

C

, you need to provide it with

heat

=

m

×

n

×

specific heat

This will account for increasing the temperature of the first gram of the sample by

n

∘

C

, of the the second gram by

n

∘

C

, of the third gram by

n

∘

C

, and so on until you reach

m

grams of water.

And there you have it. The equation that describes all this will thus be

q

=

m

⋅

c

⋅

Δ

T

, where

q

- heat absorbed

m

- the mass of the sample

c

- the specific heat of the substance

Δ

T

- the change in temperature, defined as final temperature minus initial temperature

In your case, you will have

q

=

100.0

g

⋅

4.18

J

g

∘

C

⋅

(

50.0

−

25.0

)

∘

C

q

=

10,450 J

Rounded to three sig figs and expressed in kilojoules, t

Explanation:

You might be interested in
The student soon loses his balance and falls backwards off the board at a velocity of 1.0 m/s. Assuming momentum is conserved in
Phantasy [73]

Answer:

v2 = 27.3m/s

Explanation:

Assuming forward as positive.

Mass = m1 = 64kg

Let v be the common velocity of the student and the skateboard.

mass of skateboard = m2 = 5.94kg

v = 1.4m/s

Since the skateboard and the student are initially moving together at the same velocity their momentum together is

(m1 + m2)v

Let the final velocity of the student be v1 and the final velocity of the skateboard be v2

v1 = – 1.0m/s (falls backwards that's why the velocity is negative since we are assuming forward as positive)

Then from conservation of momentum, momentum before is equal to momentum after.

(m1 + m2)v = m1v1 + m2v2

m2v2= (m1 + m2)v – m1v1

v2 = ( (m1 + m2)v – m1v1)/m2

v2 = ( (64 + 5.94)×1.4 – 64×(-1.0))/5.94

v2 = ( (64 + 5.94)×1.4 + 64×1.0)/5.94

v2 = 27.3m/s

5 0
3 years ago
How much energy is required to change a 44 g
zlopas [31]

Answer:

Ang answer units of J heat of fusion is 3.33 x 105

4 0
3 years ago
Mars has twice the mass of Mercury and is 4 times further away from the Sun. Calculate theratio of the gravitational force from
svetoff [14.1K]

Answer:

F(Mars) = 2 G m M / (4 R)^2   force of Sun on Mars

F(Merc) = G m M / R^2    force of force of Sun on Mercury

R = distance of Sun from Mercury, m = mass of Mercury

F(Merc) / F(Mars) = 4^2 / 2 = 8

6 0
2 years ago
Does heat always give of heat
iren2701 [21]
Yes it does (not to be  mean its kinda stupid for you to ask)
3 0
3 years ago
Read 2 more answers
If Petrol diesel etc catches fire one should never try to extinguish in using water why?​
FrozenT [24]

Answer:

because both petrol and diesel are oil

Explanation:

oil floats on water that's why if we will try to extinguish with water so the fire will float on <u>water</u>

<u>hope</u><u> </u><u>u</u><u> </u><u>like</u><u> </u><u>my</u><u> </u><u>ans</u><u>wer</u><u> </u>

<u>pl</u><u>ease</u><u> </u><u>mar</u><u>k</u><u> </u><u>methe</u><u> </u><u>brainest</u>

7 0
3 years ago
Other questions:
  • If a transformer has 50 turns in the primary winding and 10 turns on the secondary winding, what is the reflected resistance in
    5·1 answer
  • A runner completes a 10 km run in about 45 minutes. What was the runner’s speed in km/h?
    10·1 answer
  • Which of the following describes how the moons of Jupiter are similar to Earth?
    15·1 answer
  • A client is receiving an IV solution of sodium chloride 0.9% (Normal Saline) 250 ml with amiodarone (Cordarone) 1 gram at 17 ml/
    15·1 answer
  • A ball thrown horizontally at 18.5 m/s from the roof of a building lands 38.9 m from the base of the building.
    12·1 answer
  • IS THIS CORRECT???...........................
    11·1 answer
  • PLS HURRY AND ANSWER THIS IM GIVING 100 POINTS AND ILL MARK BRAINLIEST
    9·1 answer
  • What can be used to plot the magnetic field around a bar magnet?
    11·1 answer
  • using dimensional analysis find the relation between the velocities of transverse waves produced from the vibration of thin homo
    8·1 answer
  • a large beaker of water is filled to its rim with water. a block of wood is then carefully lowered into the beaker until the blo
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!