1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitrij [34]
3 years ago
9

How much heat is needed to raise the temperature of 50.0 g of water by 25.0°C

Physics
2 answers:
sladkih [1.3K]3 years ago
4 0

Answer:10.5 kJ

Explanation:

In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as

   c=4.18Jg∘C

Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.

Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.

In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.

What if you wanted to increase the temperature of 1 g of water by 2∘C ? You'd need to provide it with

   increase by 1∘C4.18 J+increase by 1∘C4.18 J=increase by 2∘C2×4.18 J

To increase the temperature of 1 g of water by n∘C, you'd need to supply it with

   increase by 1∘C4.18 J+increase by 1∘C4.18 J+ ... =increase by n∘Cn×4.18 J

Now let's say that you wanted to cause a 1∘C increase in a 2-g sample of water. You'd need to provide it with

   for 1 g of water4.18 J+for 1 g of water4.18 J=for 2 g of water2×4.18 J

To cause a 1∘C increase in the temperature of m grams of water, you'd need to supply it with

   for 1 g of water4.18 J+for 1 g of water4.18 J+ ,,, =for m g of waterm×4.18 J

This means that in order to increase the temperature of m grams of water by n∘C, you need to provide it with

   heat=m×n×specific heat

This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gram by n∘C, of the third gram by n∘C, and so on until you reach m grams of water.

And there you have it. The equation that describes all this will thus be

   q=m⋅c⋅ΔT , where

q - heat absorbed

m - the mass of the sample

c - the specific heat of the substance

ΔT - the change in temperature, defined as final temperature minus initial temperature

In your case, you will have

   q=100.0g

⋅4.18Jg∘C⋅(50.0−25.0)∘C

   q=10,450 J

Rounded to three sig figs and expressed in kilojoules, the answer will be

   10,450J

⋅1 kJ103J=10.5 kJ

love history [14]3 years ago
3 0

Answer:

Explanation:

In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as

c

=

4.18

J

g

∘

C

Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.

Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of

1 g

of that substance by

1

∘

C

.

In water's case, you need to provide

4.18 J

of heat per gram of water to increase its temperature by

1

∘

C

.

What if you wanted to increase the temperature of

1 g

of water by

2

∘

C

? You'd need to provide it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

=

increase by 2

∘

C



2

×

4.18 J

To increase the temperature of

1 g

of water by

n

∘

C

, you'd need to supply it with

increase by 1

∘

C



4.18 J

+

increase by 1

∘

C



4.18 J

+

...

=

increase by n

∘

C



n

×

4.18 J

Now let's say that you wanted to cause a

1

∘

C

increase in a

2-g

sample of water. You'd need to provide it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

=

for 2 g of water



2

×

4.18 J

To cause a

1

∘

C

increase in the temperature of

m

grams of water, you'd need to supply it with

for 1 g of water



4.18 J

+

for 1 g of water



4.18 J

+

,,,

=

for m g of water



m

×

4.18 J

This means that in order to increase the temperature of

m

grams of water by

n

∘

C

, you need to provide it with

heat

=

m

×

n

×

specific heat

This will account for increasing the temperature of the first gram of the sample by

n

∘

C

, of the the second gram by

n

∘

C

, of the third gram by

n

∘

C

, and so on until you reach

m

grams of water.

And there you have it. The equation that describes all this will thus be

q

=

m

⋅

c

⋅

Δ

T

, where

q

- heat absorbed

m

- the mass of the sample

c

- the specific heat of the substance

Δ

T

- the change in temperature, defined as final temperature minus initial temperature

In your case, you will have

q

=

100.0

g

⋅

4.18

J

g

∘

C

⋅

(

50.0

−

25.0

)

∘

C

q

=

10,450 J

Rounded to three sig figs and expressed in kilojoules, t

Explanation:

You might be interested in
What changes dead plants and animals into ammonia compounds?
lapo4ka [179]

Nitrogen fixing bacteria changes dead plants and animals into ammonia compounds.

<h2>What is nitrogen fixation?</h2>

Atmospheric nitrogen is converted into nitrogen oxides by the action of lightning, which helps its incorporation into the soil.

<h3>Characteristics of Nitrogen fixing bacteria</h3>

  • Nitrogen is fixed by these bacteria and other prokaryotes through various metabolic processes, which convert it into different usable compounds, such as ammonia (NH3) and ammonium ion (NH4+).

  • These microorganisms can be found in soil and water, or as plant symbionts.

Therefore, we can conclude that nitrogen fixing bacteria fix nitrogen from the air, that is, they originate soluble compounds by plants, such as ammonia.

Learn more about nitrogen fixation here: brainly.com/question/14726009

7 0
2 years ago
Scientists believe that the earth's core is made mostly of:
leva [86]

Answer:

magma

Explanation:

4 0
3 years ago
Read 2 more answers
Assume that the polymer material has a constant refractive index of 1.5. For light of 600nm wavelength at normal incidence, what
yaroslaw [1]

Answer:

Minimum thickness will be 100 nm

Explanation:

We have given refractive index is n = 1.5

Wavelength of the light incidence \lambda= 600 nm

We have to find the smallest thickness of the film so that there will be minimum light reflect

For minimum thickness of non reflecting film

t=\frac{\lambda }{4n} , here t is thickness, \lambda is wavelength and n is refractive index

Putting all values t=\frac{600}{4\times 1.5}=100nm

So minimum thickness will be 100 nm

8 0
3 years ago
Give a calculate answer to show that the two values (English system and metric system) for the Planck Constant are equivalent.
Nataly_w [17]

Answer:

Given values of Planck Constant are equivalent in English system and metric system.

Explanation:

Value of Planck's constant is given in English system as 4.14 x 10⁻¹⁵eV s.

Converting this in to metric system .

We have 1 eV = 1.6 x 10⁻¹⁹ J

Converting

     4.14 x 10⁻¹⁵eV s = 4.14 x 10⁻¹⁵x 1.6 x 10⁻¹⁹ = 6.63 x 10⁻³⁴ Joule s

So Given values of Planck Constant are equivalent in English system and metric system.

7 0
3 years ago
A baseball of mass m = 0.31 kg is spun vertically on a massless string of length L = 0.51m. The string can only support a tensio
natulia [17]

Given data:

* The mass of the baseball is 0.31 kg.

* The length of the string is 0.51 m.

* The maximum tension in the string is 7.5 N.

Solution:

The centripetal force acting on the ball at the top of the loop is,

\begin{gathered} T+mg=\frac{mv^2}{L}_{} \\ v^2=\frac{L(T+mg)}{m} \\ v=\sqrt[]{\frac{L(T+mg)}{m}} \end{gathered}

For the maximum velocity of the ball at the top of the vertical circular motion,

v_{\max }=\sqrt[]{\frac{L(T_{\max }+mg)}{m}}

where g is the acceleration due to gravity,

Substituting the known values,

\begin{gathered} v_{\max }=\sqrt[]{\frac{0.51(7.5_{}+0.31\times9.8)}{0.31}} \\ v_{\max }=\sqrt[]{\frac{0.51(10.538)}{0.31}} \\ v_{\max }=\sqrt[]{17.34} \\ v_{\max }=4.16\text{ m/s} \end{gathered}

Thus, the maximum speed of the ball at the top of the vertical circular motion is 4.16 meters per second.

8 0
1 year ago
Other questions:
  • Explain in your own words the interaction between the electric and magnetic fields that make up a light wave.
    6·1 answer
  • Determine whether the following statements are true or false and give an explanation or counter example. a. If the acceleration
    15·1 answer
  • How is a crime scene secured ?
    10·2 answers
  • Describe 2 ways in which a giant boulder by the ocean may change over time.
    12·1 answer
  • The battery charger for an mp3 player contains a step-down transformer with a turns ratio of 1:38, so that the voltage of 120 v
    10·1 answer
  • Which pair of objects will have the least gravitational attraction to each other
    10·1 answer
  • Is what happening in the air or the atmosphere at one time in one place
    10·1 answer
  • The diameter of a steel rod is 56.47 ± 0.02mm<br>What does it mean....... please ​
    9·1 answer
  • Plz help me find the answers
    5·2 answers
  • Can sugar molecules produced from photosynthesis be rearranged into different compounds carry out life process
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!