Answer:
The maximum static frictional force is 40N.
Explanation:
When an object of mass M is on a surface with a coefficient of static friction μ, there is a minimum force that you need to apply to the object in order to "break" the coefficient of static friction and be able to move the object (Called the threshold of motion, once the object is moving we have a coefficient of kinetic friction, which is smaller than the one for static friction).
This coefficient defines the maximum static friction force that we can have.
So if we apply a small force and we start to increase it, the static frictional force will be equal to our force until it reaches its maximum, and then we can move the object and now we will have frictional force.
In this case, we know that we apply a force of 40N and the object just starts to move.
Then we can assume that we are just at the point of transition between static frictional force and kinetic frictional force (the threshold of motion), thus, 40 N is the maximum of the static frictional force.
Answer: 80J
Explanation:
According to the first principle of thermodynamics:
<em>"Energy is not created, nor destroyed, but it is conserved." </em>
Then this priciple (also called Law) relates the work and the transferred heat exchanged in a system through the internal energy
, which is neither created nor destroyed, it is only transformed. So, in this especific case of the compressed gas:
(1)
Where:
is the variation in the internal (thermal) energy of the system (the value we want to find)
is the heat transferred out of the gas (that is why it is negative)
is the work is done on the gas (as the gas is compressed, the work done on the gas must be considered positive )
On the other hand, the work done on the gas is given by:
(2)
Where:
is the constant pressure of the gas
is the variation in volume of the gas
In this case the initial volume is
and the final volume is
.
This means:
(3)
Substituting (3) in (2):
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
This is the change in thermal energy in the compression process.
Answer:
I literally just learned this last week and if I remember correctly it is Faraday's Law of Induction.
Explanation: Hope this helps also I hope you have/had an amazing day today<3
Complete Question
The complete question is shown on the first uploaded image
Answer:
a

b
New 
Explanation:
From the question we are told that
The refractive index of the core is 
The refractive index of the cladding is 
Generally according to Snell's law

Where
is the largest angle a largest angle a ray will make with respect to the interface of the fiber and experience total internal reflection
![\theta_{max} = 90 - sin^{-1} [\frac{n_{cladding}}{n_{core}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_%7Bcladding%7D%7D%7Bn_%7Bcore%7D%7D%20%5D)
![\theta_{max} = 90 - sin^{-1} [\frac{1.421}{1.497}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7B1.421%7D%7B1.497%7D%7D%20%5D)

Given from the question the the largest angle is 5°
Generally the refraction index of the cladding is mathematically represented as

