1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
2 years ago
15

If Weight=mg and Force=ma, and the only force acting on an object is gravity, then the masses cancel each other out and you are

left with g=a. Therefore, that must mean everything on earth must fall at the same rate. Is this true Why or why not?
Physics
2 answers:
anygoal [31]2 years ago
8 0

The correct answer to question:

Explanation:

gregori [183]2 years ago
5 0

When g=a, that means everything on earth fall at the same rate.

<h3>Why does everything fall to the earth at the same rate?</h3>

As such, all objects free fall at the same rate regardless of their mass. Because the 9.8 N/kg gravitational field at Earth's surface causes a 9.8 m/s/s acceleration of any object placed there, we often call this ratio the acceleration of gravity.

<h3>Why is gravity equal to acceleration?</h3>

When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.

Know more about gravity here

brainly.com/question/4014727

#SPJ2

You might be interested in
A certain type of laser emits light that has a frequency of 4.2 × 1014 Hz. The light, however, occurs as a series of short pulse
bogdanovich [222]

Explanation:

It is given that,

Frequency of the laser light, f=4.2\times 10^{14}\ Hz

Time, t=3.2\times 10^{-11}\ s

(a) Let \lambda is the wavelength of this light. It can be calculated as :

\lambda=\dfrac{c}{f}

\lambda=\dfrac{3\times 10^8}{4.2\times 10^{14}}

\lambda=7.14\times 10^{-7}\ m

or

\lambda=714\ nm

(b) Let n is the number of the wavelengths in one pulse. It can be calculated as :

n=f\times t

n=4.2\times 10^{14}\times 3.2\times 10^{-11}

n = 13440

Hence, this is the required solution.

8 0
3 years ago
What is the energy range (in joules) of photons of wavelength 410 nm to 750 nm ? Express your answers using two significant figu
andreyandreev [35.5K]

Answer:

4.9 x 10^-19 J, 2.7 x 10^-19 J

Explanation:

first wavelength, λ1 = 410 nm = 410 x 10^-9 m

Second wavelength, λ2 = 750 nm = 750 x 10^-9 m

The relation between the energy and the wavelength is given by

E = h c / λ

Where, h is the Plank's constant and c be the velocity of light.

h = 6.63 x 10^-34 Js

c = 3 x 10^8 m/s

So, energy correspond to first wavelength

E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J

E1 = 4.9 x 10^-19 J

So, energy correspond to second wavelength

E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J

E2 = 2.7 x 10^-19 J

4 0
3 years ago
A 0.0250-kg bullet is accelerated from rest to a speed of 550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much worse
kondaur [170]

Answer:

a) 4.583 m/s

b) 31.505 J

c) 0.491 m/s

d) 3.375 J

e)

   p_player = (110 kg)(8 m/s) = 880 kg m/s

   p_ball = (0.41 kg)(25 m/s) = 10.25 kg m/s

Explanation:

HI!

a)

We can calculate the recoil velocity by conservation of momentum, remember that p=mv.

The momentum of the bullet is:

p_b = (0.0250 kg)*(550 m/s )

The momentum of the rifle is:

p_r = (3 kg) * v

Since the total initial momentum is zero:

p_b = p_r

That is:

v = (550 m/s ) (0.0250 kg/ 3 kg ) = 4.583 m/s

b)

The kinetic energy gained by the rifle is:

K = (1/2) m v^2 = (1/2) *(3 kg) *(4.583 m/s)^2 = 31.505 J

c)

We use the same formula as in a), but with m=28kg instead of 3 kg

v = (550 m/s ) (0.0250 kg/ 28 kg ) = 0.491 m/s

d)

Again, the same formula as b, but with m=28 and v=0.491 m/s

K = 3.375 J

e)

p_player = (110 kg)(8 m/s) = 880 kg m/s

p_ball = (0.41 kg)(25 m/s) = 10.25 kg m/s

I believe that the kinetic energy is more related to the problem than the momentum. The relation between these two quantities is:

K = p^2/(2m)

usiing this relation, we get:

K_player = 3520 J

K_ball =  128.125 J

Therefore the kinetic energy of the player is around 27 time larger than the kinetic energy of the ball, that being said, the pain of being tackled by that player is around 27 times greater that being hit by the ball!

4 0
3 years ago
Explain why the top of the loop cannot be the same height as (or higher than) the top of the first hill. Assume the roller coast
Ivahew [28]

Answer:

By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.

Explanation:

7 0
3 years ago
Read 2 more answers
State Pascal's principle of transmission of pressure​
bulgar [2K]

Answer:

Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.

4 0
3 years ago
Other questions:
  • The speedometer in your car reads 55mi/h this represents ___ of the car
    15·1 answer
  • Physics. How to solve this?
    13·1 answer
  • An object moves in simple harmonic motion described by the equation d equals one fifth sine 2 t where t is measured in seconds a
    9·1 answer
  • A beam of protons is directed in a straight line along the +z direction through a region of space in which there are crossed ele
    13·1 answer
  • A hockey puck is set in motion across a frozen pond. If ice friction and air resistance are neglected, the forcerequired to keep
    11·1 answer
  • A space probe traveling from earth will hit the asteroid belt at what distance?
    7·1 answer
  • For this situation to demonstrate a balanced force, how much force must Omar apply? (In the picture, Sam is pushing a box to the
    15·2 answers
  • Uest<br>1. State Newton's law of cooling.​
    6·1 answer
  • Trey is testing a properly working resistor in a circuit and finds its value to be far lower than he expects what’s a likely err
    6·1 answer
  • Heres some earned points
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!