To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 
El factor mas importante para el exceso de peso es un exceso de energía creada por una alimentación excesiva
El peso de un cuerpo es definido por la relación entre la energía requerida para los procesos vitales del cuerpo, sus actividades físicas diarias y la energía suministra en forma de alimentos.
Cuando estos dos parámetros están en balance el peso es estable, pero cuando la cantidad de alimentos aumenta o el valor energético de los mismo aumenta se tiene un exceso de energía que el cuerpo almacena en forma de grasa corporal, este el el factor mas importante para el exceso de peso.
En conclusión el factor mas importante para el exceso de peso es un exceso de energía por una alimentación excesiva
aprende mas acerca del peso corporal aquí:
brainly.com/question/13032223
Answer: Volume = 1080m^3
Explanation:
Given that the prism has a 15 m by 18 m rectangular base and a height of 4 m
Volume is the product of length, breath and height. That is
Volume = L × B × H
Where
L = 18 m
B = 15m
H = 4m
Using the formula above gives:
Volume V = 18 × 15 × 4
V = 1080 m^3
The answer is no. If you are dealing with a conservative force and the object begins and ends at the same potential then the work is zero, regardless of the distance travelled. This can be shown using the work-energy theorem which states that the work done by a force is equal to the change in kinetic energy of the object.
W=KEf−KEi
An example of this would be a mass moving on a frictionless curved track under the force of gravity.
The work done by the force of gravity in moving the objects in both case A and B is the same (=0, since the object begins and ends with zero velocity) but the object travels a much greater distance in case B, even though the force is constant in both cases.