Answer:
Explanation:
The difference in time will be due to travel through atmosphere where speed of light slows down. If t be the thickness of atmosphere and c be the speed of light in space and μ be the refractive index of atmosphere difference in travel time will be as follows .
difference = \frac{2t\mu }{c}-\frac{2t }{c}
=\frac{2t}{c }\left ( 1-\mu \right )
Now t = 40 x 10³m ,μ = 1.000293 , c = 3 x 10⁸.
difference =\frac{2t\mu }{c}-\frac{2t }{c}
=\frac{2t}{c }\left ( \mu -1 \right )\\
=\frac{ 2\times 40\times 10^3}{3\times10^3 }\left ( 1.000293-1 \right )\\
=7.81\times 10^{-3}
s
Answer:
See the explanation below
Explanation:
Student c's belief is fulfilled only for the movement of the earth with respect to the sun. But it has no validity or does not exist when it is necessary to explain other physical phenomena with respect to other satellites. For example, how would you explain the phases of the moon, if the Earth is located in the center of the Galaxy?, another serious question regarding the observations made by scientists millions of years ago, where they observed that the distances of the Earth from other planets were changing, with respect to time. If the Earth was in the center, all the planets and the sun would revolve around it preserving a constant distance (radius), at all times.
Other phenomena to explain would be the seasons on Earth, these are due to the axis of inclination of the Earth and the rotation of it around the sun.
Answer:
(a) F = 15.12 N
(b) a = 30.24 m/s²
(c) To Left
Explanation:
(a)
The magnitude of the spring force is given by Hooke's Law as follows:
F = kx
where,
F = Spring Force = ?
k = Spring Constant = 126 N/m
x = Displacement = A = 0.12 m
Therefore,
F = (126 N/m)(0.12 m)
<u>F = 15.12 N</u>
(b)
The magnitude of acceleration can be found by comparing the spring force with the unbalanced force formula of Newton's Second Law:
F = ma
where,
F = Spring Force = 15.12 N
m = mass of block = 0.5 kg
a = magnitude of acceleration = ?
15.12 N = 0.5 kg (a)
a = 15.12 N/0.5 kg
<u>a = 30.24 m/s²</u>
<u></u>
(c)
Since, the acceleration is always directed towards mean (equilibrium) position in periodic motion. Therefore, the direction of the acceleration at the time of release will be <u>to left.</u>
Answer:
Explanation:
given,
ω₁ = 120 rpm
1 rpm = 
rad/s
= 12.56 rad/s
α = - 4 rad/s²
diameter of disk = 20 cm
final angular velocity = 0
t = 
t = 
t = 3.14 s.
2) 
= 
= 19. 72 radians
3) total angular distance rotated
x = θ R
x = 19.72 × 0.1 = 1.97 m
x = 2 m