1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
3 years ago
11

Which of Newton’s Laws involves mass and acceleration?

Physics
2 answers:
Temka [501]3 years ago
4 0
The answer is <span>Newton’s</span> 2nd law. Thank you! 
castortr0y [4]3 years ago
3 0
<span>Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
In short, It's Newton's 2nd law.
Brainliest please if you also found this was correct.
Sources: http://www.physicsclassroom.com/class/newtlaws/Lesson-3/Newton-s-Second-Law
</span>
You might be interested in
What is meant in astronomy by the phrase "adaptive optics?
Sergeu [11.5K]
<h2>Answer: a.The mirrors and eyepiece of a large telescope are spring-loaded to allow them to return quickly to a known position. </h2>

Explanation:

Adaptive optics is a method used in several astronomical observatories to counteract in real time the effects of the Earth's atmosphere on the formation of astronomical images.

This is done through the insertion into the optical path of the telescope of sophisticated deformable mirrors supported by a set of computationally controlled actuators. Thus obtaining clear images despite the effects of atmospheric turbulence that cause the unwanted distortion.

It should be noted that with this technique it is also necessary to have a moderately bright reference star that is very close to the object to be observed and studied. However, it is not always possible to find such stars, so a powerful laser beam is used to point towards the Earth's upper atmosphere and create artificial stars.

7 0
3 years ago
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
The momentum of a 5-kilogram object moving at 6 meters per second is-
goldfiish [28.3K]
I think the answer is 30 but I’m not sure
3 0
2 years ago
When a rocket is 4 kilometers high, it is moving vertically upward at a speed of 400 kilometers per hour. At that instant, how f
Y_Kistochka [10]

Answer:

The angle of elevation of the rocket is increasing at a rate of 48.780º per second.

Explanation:

Geometrically speaking, the distance between the rocket and the observer (r), measured in kilometers, can be represented by a right triangle:

r = \sqrt{x^{2}+y^{2}} (1)

Where:

x - Horizontal distance between the rocket and the observer, measured in kilometers.

y - Vertical distance between the rocket and the observer, measured in kilometers.

The angle of elevation of the rocket (\theta), measured in sexagesimal degrees, is defined by the following trigonometric relation:

\tan \theta = \frac{y}{x} (2)

If we know that x = 5\,km, then the expression is:

\tan \theta = \frac{y}{5}

And the rate of change of this angle is determined by derivatives:

\sec^{2}\theta \cdot \dot \theta = \frac{1}{5}\cdot \dot y

\frac{\dot \theta}{\cos^{2}\theta} = \frac{\dot y}{5}

\frac{\dot \theta\cdot (25+y^{2})}{25} = \frac{\dot y}{5}

\dot \theta = \frac{5\cdot \dot y}{25+y^{2}}

Where:

\dot \theta - Rate of change of the angle of elevation, measured in sexagesimal degrees.

\dot y - Vertical speed of the rocket, measured in kilometers per hour.

If we know that y = 4\,km and \dot y = 400\,\frac{km}{h}, then the rate of change of the angle of elevation is:

\dot \theta = 48.780\,\frac{\circ}{s}

The angle of elevation of the rocket is increasing at a rate of 48.780º per second.

3 0
3 years ago
a geosynchronous satellite appears to remain over one spot on earth. a geosynchronous satellite has an orbital radius of 4.23 ×
Natasha2012 [34]

Given that,

radius, r = 4.23 x 10∧7 m

Period, T = ?

Since, we know that,

In a geosynchronous satellite, period is equal to the period of earth that is 24 hrs.

Therefore, Time period is equal to 24 hours.


8 0
3 years ago
Other questions:
  • How much is one degree Celsius in temperature change ?
    9·1 answer
  • Sandy is whirling a ball attached to a string in a horizontal circle over his head. If Sandy doubles the speed of the ball, what
    14·1 answer
  • 3) A charged particle is moving with velocity of V in a magnetic field of B, which one of the followings is correct: A) The dire
    15·1 answer
  • According to the U.S. Census Bureau, in 2016, about 12.7% of the American population lived in poverty. Research demonstrates tha
    15·1 answer
  • What happens to the appearance of an object as it gets hotter?
    8·1 answer
  • Which choice shows the correct sequence of features formed by continued wave erosion?
    8·1 answer
  • You can send your picture<br>and type the answer to the questions
    8·1 answer
  • Who is invented compass​
    7·2 answers
  • A ship is travelling due east at 30 km/hr and a boy runs across the deck
    9·1 answer
  • The voltage in a circuit is given by the equation V = IR . In this equation , Vis the voltage, the current, and Ris the resistan
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!