1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
9

The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c

ircuit capacitance is 0.04 microfrad . Find the circuit resistance and inductance
Engineering
1 answer:
iVinArrow [24]3 years ago
5 0

Answer:

  • The resistance of the circuit is 1250 ohms
  • The inductance of the circuit is 0.063 mH.

Explanation:

Given;

current at resonance, I = 0.2 mA

applied voltage, V = 250 mV

resonance frequency, f₀ = 100 kHz

capacitance of the circuit, C = 0.04 μF

At resonance, capacitive reactance (X_c) is equal to inductive reactance (X_l),

Z = \sqrt{R^2 + (X_ l - X_c)^2} \\\\But \ X_l= X_c\\\\Z = R

Where;

R is the resistance of the circuit, calculated as;

R = \frac{V}{I} \\\\R = \frac{250 \ \times \ 10^{-3}}{0.2 \ \times \ 10^{-3}} \\\\R = 1250 \ ohms

The inductive reactance is calculated as;

X_l = X_c = \frac{1}{\omega C} = \frac{1}{2\pi f_o C} = \frac{1}{2\pi (100\times 10^3)(0.04\times 10^{-6} ) } = 39.789 \ ohms\\

The inductance is calculated as;

X_l = \omega L = 2\pi f_o L\\\\L = \frac{X_l}{2\pi f_o}\\\\L = \frac{39.789}{2\pi (100 \times 10^3)}  \\\\L= 6.3 \ \times \ 10^{-5} \ H\\\\L = 0.063 \times \ 10^{-3} \ H\\\\L = 0.063 \ mH

You might be interested in
This problem demonstrates aliasing. Generate a 512-point waveform consisting of 2 sinusoids at 200 and 400-Hz. Assume a sampling
aalyn [17]

Answer and Explanation:

clear all; close all;  

N=512;  

t=(1:N)/N;

fs=1000;  

f=(1:N)*fs/N;

x= sin(2*pi*200*t) + sin(2*pi*400*t);  

y= sin(2*pi*200*t) + sin(2*pi*900*t);

for n = 1:20  

a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))

b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))  

c(n) = sqrt(a(n).^2+b(n).^2)  

theta(n) =-(360/(2*pi))*atan(b(n)./a(n));  

end  

plot(f(1:20),c(1:20),'rd');

disp([a(1:4),b(1:4),c(1:4),theta(1:4)])

8 0
3 years ago
At the coast on a summer day, the land is hotter than the ocean. Warm air over the land rises and is replaced by cooler air, cau
Alona [7]
B) The convection current will reverse direction, reversing the winds.
8 0
3 years ago
Read 2 more answers
"Write a statement that outputs variable numItems. End with a newline. Program will be tested with different input values."
kirill [66]

Answer:

The solution code is written in Java.

System.out.println(numItems);

Explanation:

Java <em>println() </em>method can be used to display any string on the console terminal. We can use <em>println()</em> method to output the value held by variable <em>numItems.</em> The <em>numItems </em>is passed as the input parameter to <em>println()</em> and this will output the value of <em>numItems</em> to console terminal and at the same time the output with be ended with a newline automatically.  

6 0
3 years ago
A heat engine receives heat from a heat source at 1453 C and has a thermal efficiency of 43 percent. The heat engine does maximu
xxMikexx [17]

Answer:

a) 1253 kJ

b) 714 kJ

c) 946 C

Explanation:

The thermal efficiency is given by this equation

η = L/Q1

Where

η: thermal efficiency

L: useful work

Q1: heat taken from the heat source

Rearranging:

Q1 = L/η

Replacing

Q1 = 539 / 0.43 = 1253 kJ

The first law of thermodynamics states that:

Q = L + ΔU

For a machine working in cycles ΔU is zero between homologous parts of the cycle.

Also we must remember that we count heat entering the system as positiv and heat leaving as negative.

We split the heat on the part that enters and the part that leaves.

Q1 + Q2 = L + 0

Q2 = L - Q1

Q2 = 539 - 1253 = -714 kJ

TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:

η = 1 - T2/T1

T2/T1 = 1 - η

T2 = (1 - η) * T1

The temperatures must be given in absolute scale (1453 C = 1180 K)

T2 = (1 - 0.43) * 1180 = 673 K

673 K = 946 C

8 0
3 years ago
WHAT IS THIS PLSSSSSS HELP
alekssr [168]

Answer:

It looks like... A machine that reads electric pulse and surge... Not sure though.

Explanation:

8 0
3 years ago
Other questions:
  • g The pump inlet is located 1 m above an arbitrary datum. The pressure and velocity at the inlet are 100 kPa and 2 m/s, respecti
    8·1 answer
  • Anyone have 11th grade engineering on odyssey ware?
    8·1 answer
  • Assignment 1: Structural Design of Rectangular Reinforced Concrete Beams for Bending
    6·1 answer
  • A cooking pan whose inner diameter is 20 cm is filled with water and covered with a 4-kg lid. If the local atmospheric pressure
    9·2 answers
  • In terms of the atomic radius, R, determine the distance between the centers of adjacent atoms for the FCC crystal structure alo
    15·1 answer
  • A Carnot engine is operated between two heat reservoirs at temperatures of 520 K and 300 K. It receives heat from the 520 K rese
    8·1 answer
  • On a cold winter day, wind at 55 km/hr is blowing parallel to a 4-m high and 10-m long wall of a house. If the air outside is at
    8·1 answer
  • Please choose a specific type of stability or control surface (e.g., a canard) and explain how it is used, what it is used for,
    5·1 answer
  • Please what is dif<br>ference between building technology and building engineering.​
    14·2 answers
  • IF A CAR AHEAD OF YOU HAS STOPPED AT A CROSSWALK, YOU SHOULD:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!