1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
9

The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c

ircuit capacitance is 0.04 microfrad . Find the circuit resistance and inductance
Engineering
1 answer:
iVinArrow [24]3 years ago
5 0

Answer:

  • The resistance of the circuit is 1250 ohms
  • The inductance of the circuit is 0.063 mH.

Explanation:

Given;

current at resonance, I = 0.2 mA

applied voltage, V = 250 mV

resonance frequency, f₀ = 100 kHz

capacitance of the circuit, C = 0.04 μF

At resonance, capacitive reactance (X_c) is equal to inductive reactance (X_l),

Z = \sqrt{R^2 + (X_ l - X_c)^2} \\\\But \ X_l= X_c\\\\Z = R

Where;

R is the resistance of the circuit, calculated as;

R = \frac{V}{I} \\\\R = \frac{250 \ \times \ 10^{-3}}{0.2 \ \times \ 10^{-3}} \\\\R = 1250 \ ohms

The inductive reactance is calculated as;

X_l = X_c = \frac{1}{\omega C} = \frac{1}{2\pi f_o C} = \frac{1}{2\pi (100\times 10^3)(0.04\times 10^{-6} ) } = 39.789 \ ohms\\

The inductance is calculated as;

X_l = \omega L = 2\pi f_o L\\\\L = \frac{X_l}{2\pi f_o}\\\\L = \frac{39.789}{2\pi (100 \times 10^3)}  \\\\L= 6.3 \ \times \ 10^{-5} \ H\\\\L = 0.063 \times \ 10^{-3} \ H\\\\L = 0.063 \ mH

You might be interested in
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
A certain servomechanism system has dynamics dominated by a pair of complex poles and no finite nan specifications on the rise t
AveGali [126]

Answer:

The solution is given in the attachments

3 0
3 years ago
technician a says that dynamic voltage is the voltage (usually of a battery) that exists without a load being applied. technicia
Artist 52 [7]

The battery electrolyte's specific gravity can be used to test the status of charge of a battery cell in the most precise and direct manner possible.

The state of charge increases with the specific gravity of the electrolyte. Voltage is the difference in electric potential between a battery's two terminals. The unit of measurement for voltage is called a volt (V), after the battery's creator, John Volta. An electronic tool called a state-of-charge battery tester is made to check the life and rechargability of an electric battery. A battery's current charging status and voltage output can be provided by a state-of-charge tester, which can also look for any defects that might impair the battery's overall performance.

Learn more about battery here-

brainly.com/question/17377812

#SPJ4

8 0
1 year ago
An automotive fuel cell consumes fuel at a rate of 28m3/h and delivers 80kW of power to the wheels. If the hydrogen fuel has a h
EastWind [94]

Answer:

The efficiency of this fuel cell is 80.69 percent.

Explanation:

From Physics we define the efficiency of the automotive fuel cell (\eta), dimensionless, as:

\eta = \frac{\dot W_{out}}{\dot W_{in}} (Eq. 1)

Where:

\dot W_{in} - Maximum power possible from hydrogen flow, measured in kilowatts.

\dot W_{out} - Output power of the automotive fuel cell, measured in kilowatts.

The maximum power possible from hydrogen flow is:

\dot W_{in} = \dot V\cdot \rho \cdot L_{c} (Eq. 2)

Where:

\dot V - Volume flow rate, measured in cubic meters per second.

\rho - Density of hydrogen, measured in kilograms per cubic meter.

L_{c} - Heating value of hydrogen, measured in kilojoules per kilogram.

If we know that \dot V = \frac{28}{3600}\,\frac{m^{3}}{s}, \rho = 0.0899\,\frac{kg}{m^{3}}, L_{c} = 141790\,\frac{kJ}{kg} and \dot W_{out} = 80\,kW, then the efficiency of this fuel cell is:

(Eq. 1)

\dot W_{in} = \left(\frac{28}{3600}\,\frac{m^{3}}{s}\right)\cdot \left(0.0899\,\frac{kg}{m^{3}} \right)\cdot \left(141790\,\frac{kJ}{kg} \right)

\dot W_{in} = 99.143\,kW

(Eq. 2)

\eta = \frac{80\,kW}{99.143\,kW}

\eta = 0.807

The efficiency of this fuel cell is 80.69 percent.

3 0
3 years ago
True or False?
liubo4ka [24]

Answer:

False

Explanation:

Lack of consumption will lead to wasted production

7 0
2 years ago
Other questions:
  • Choose two consumer services careers and research online to determine what kinds of professional organizations exist for these p
    11·1 answer
  • A satellite orbits the Earth every 2 hours at an average distance from the Earth's centre of 8000km. (i) What is the average ang
    7·1 answer
  • What is the difference between a job and a profession
    9·1 answer
  • A sample of wastewater is diluted 10 times. The diluted solution has an ultimate biochemical oxygen demand (BOD), Lo, of 30 mg/L
    9·1 answer
  • Why do y'all boys be so toxic and fake?
    10·2 answers
  • Air at 80 kPa and 10°C enters an adiabatic diffuser steadily with a velocity of 150 m/s and leaves with a low velocity at a pre
    11·1 answer
  • When you come to an intersection, follow the _________ before you proceed.
    6·2 answers
  • Briefly describe an idea for a new product, (which can be anything) while thinking made me about it cost analysis. Depict what k
    11·1 answer
  • We have a tube with a diameter of 5 inches that is 1 foot long. The tube then reduces the diameter to 3 inches. According to the
    8·2 answers
  • 10) A pressure sensor consisting of a diaphragm with strain gauges bonded to its surface has the following information in its sp
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!