Answer:
Explanation:When silver Ag metal is added to copper sulphate CuSO4 solution, no reaction takes place as silver is less reactive than that of copper and cannot displace copper from its solution. Hence, when a piece of silver metal is added to copper sulphate solution there will be no reaction.
I’m not too sure I hope someone answers for you
Answer:
Concentration AgBr at saturation = 7.07 x 10⁻⁷M
Explanation:
Given AgBr(s) => Ag⁺(aq) + Br⁻(aq) ; Ksp = 5 x 10⁻¹³ = [Ag⁺][Br⁻]
I --- 0 0
C --- +x +x
E --- x x
[Ag⁺][Br⁻] = (x)(x) = x² = 5 x 10⁻¹³ => x = SqrRt(5 x 10⁻¹³) = 7.07 x 10⁻⁷M
<h3>
Answer:</h3>
0.6 g NaCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] Na₂CO₃ (aq) + CaCl₂ (aq) → CaCO₃ (s) + 2NaCl (aq)
[Given] 0.5 g Na₂CO₃ reacted with excess CaCl₂
<u>Step 2: Identify Conversions</u>
[RxN] Na₂CO₃ → 2NaCl
Molar Mass of Na - 22.99 g/mol
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of Na₂CO₃ - 2(22.99) + 12.01 + 3(16.00) = 105.99 g/mol
Molar Mass of NaCl - 22.99 + 35.45 = 58.44 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
0.551373 g NaCl ≈ 0.6 g NaCl