Answer:
162 kJ
Explanation:
The reaction given by the problem is:
- NBr₃(g) + 3 H₂O(g) → 3 HOBr(g) + NH₃(g) ∆H = +81 kJ
If we turn it around, we have:
- 3 HOBr(g) + NH₃(g) → NBr₃(g) + 3 H₂O(g) ∆H = -81 kJ
If we think now of HOBr and NH₃ as our reactants, then now we need to find out <u>which one will be the </u><em><u>limiting reactant</u></em> when we have 9 moles of HOBr and 2 moles of NH₃:
- When we have 1 mol NH₃, we need 3 mol HOBr. So when we have 2 moles NH₃, we need 6 moles HOBr. We have more than 6 moles HOBr so that's our <em>reactant in excess</em>, thus NH₃ is our limiting reactant.
-81 kJ is our energy change when there's one mol of NH₃ reacting, so we <u>multiply that value by two when there's two moles of NH₃ reacting</u>. The answer is 81*2 = 162 kJ.
A. Archilles ! Hope this helped :)!
A species with a positive charge will have a net attraction to a species with a negative charge. Among the choices, N3- is the only one attracted to a positive charge.
Fluoride is an anion of Fluorine
What this means is that the two have the same number of protons (9), but Fluoride has 10 electrons compared to Fluorine's 9.
So the answers are:
Protons - 9
Neutrons - 9
Electrons - 10
Atomic Number - 9
Atomic Mass - 19 g/mol