1. Double replacement (DR)
2. Decomposition (D)
<h3>Further explanation</h3>
1. Al2(SO4)3 + Ca3(PO4)2 -> 2AIPO4 + 3CaSO4
Double replacement (DR) : there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
General form :
AB + CD -> AD + CB
2. 2NaCIO3 → 2NaCl + 3O2
Decomposition (D) : Reactant breakdown into simpler ones(reverse of combination)
General form :
AB ---> A + B
Answer:
116.3 grCO2
Explanation:
1st - we balance the equation so that it finds the same amount of elements of the product side and of the reagent side
C6H6 +15/2 O2⟶ 6CO2 +3 H2O
2nd - we calculate the limiting reagent
39.2gr C6H6*(240grO2/78grC6H6)=120 grO2
we don't have that amount of oxygen so this is the excess reagent and oxygen the limiting reagent
3rd - we use the limiting reagent to calculate the amount of CO2 in grams
105.7grO2*(264grCO2/240grO2)=116.3 grCO2
The metals will lose electrons while the non metals will gain electrons in order to attain octet structure.
An ion can be cation (positively charged) or anion (negatively charged).
Cations attain octet structure (8) by losing electron(s) while anions become stable or attains octet structure (8) by gaining electron(s).
The remaining elements are completed as follows to attain octet structure;
<u>Element</u>--<u>valence electron</u>--<u>electrons to gain</u>--<u>electrons to lose</u>--<u>ion formed</u>
O ------------ 6 ---------------------- 2 ------------------------ none -------------- 
Ca -------- 2 ----------------------- none ---------------------- 2 ------------------ 
Br ----------- 7 --------------------- 1 ------------------------ none --------------- 
S ------------ 6 ----------------------- 2 ------------------------ none --------------- 
Cl ------------ 7 ----------------------- 1 ------------------------ none ----------------
K -------------- 1 ----------------------- none ----------------------- 1 ------------------ 
Mg ------------ 2 ---------------------- none ---------------------- 2 ---------------- 
Be ------------- 2 ---------------------- none ---------------------- 2 ---------------- 
Learn more here: brainly.com/question/21089350
The largest advantage of sodium-ion batteries is the high natural abundance of sodium. This could make commercial production of sodium-ion batteries less expensive than lithium-ion batteries. As of 2020, sodium ion batteries have very little share of the battery market.
Answer:
N - 1s²2s²2p³
Explanation:
Nitrogen is located in the p-block of the periodic table (groups 13-18) and is on the 2nd period.
The 2nd period tells us the principal energy level (a quantum number) is n = 2. Therefore, it must have already filled up the 1s sublevel.
The groups 13-18 on period 2 tells us that the 2s sublevel is also filled.
Nitrogen is located in Group 15. That means that there are 3 electrons that have filled the 2p sublevel, out of a possible 6.
Therefore, our electron configuration is 1s²2s²2p³
2p³ (Shorthand Config)
[He] 2s²2p³ (Noble Gas Config)