Answer:
Work is the energy transferred to or from an object via the application of force along a displacement.
Something super duper uper stuper luper nuper tuper zuper yuper fuper guper huper kuper juper wuper special
Answer:
The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.
In fact, the magnetic force exerted by the magnetic field on the wire is
where I is the current in the wire, L the length of the wire, B the magnetic field intensity and the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is and so , therefore the magnetic force is zero: F=0.
Answer:
Yes, it is very helpful.
Explanation:
It's helpful since in a cell, plant or animal, there are a lot of different things. It's hard to memorize everything and know what they look like. Using a model can help you memorize everything better and even understand it better. If someone asked me where or what something was in a cell I think I would be able to recognize it better.
I hope this helps!
(a) +9.30 kg m/s
The impulse exerted on an object is equal to its change in momentum:

where
m is the mass of the object
is the change in velocity of the object, with
v = final velocity
u = initial velocity
For the volleyball in this problem:
m = 0.272 kg
u = -12.6 m/s
v = +21.6 m/s
So the impulse is

(b) 155 N
The impulse can also be rewritten as

where
F is the force exerted on the volleyball (which is equal and opposite to the force exerted by the volleyball on the fist of the player, according to Newton's third law)
is the duration of the collision
In this situation, we have

So we can re-arrange the equation to find the magnitude of the average force:
