Answer:
lead ii nitrate is the answer
Answer: (C) conservation of matter
Solution: Law of conservation of matter or mass states that' total mass of the reactants should always be equal to the total mass of the product that is the total mass is remained conserved in a chemical reaction.
A balanced chemical equation always follow this law.
For example:

Mass of hydrogen = 1 g/mol
Mass of Oxygen = 16 g/mol
Total mass on the reactants = 2(2×1)+(2×16)= 36g/mol
Total mass on the product side = 2[(2×1) +16] = 36 g/mol
As,
Mass on reactant side = Mass on the product side
Therefore, a balanced chemical reaction follows Law of Conservation of mass.
Answer:
C) 2 H₂ + O₂ → 2 H₂O
Explanation:
4 atoms of hydrogen on reactant side
2 atoms of oxygen on reactant side
4 atoms of hydrogen on product side
2 atoms of oxygen on product side
The balanced equation for the neutralisation reaction is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
the number of moles of NaOH reacted - 0.126 mol/L x 0.0173 L = 0.00218 mol
if 2 mol of NaOH reacts with 1 mol of H₂SO₄
then 0.00218 mol of NaOH reacts with - 0.00218 / 2 = 0.00109 mol of H₂SO₄
molarity is the number of moles of solute in 1 L solution
therefore if 25 mL contains - 0.00109 mol
then 1000 mL contains - 0.00109 mol / 25 mL x 1000 mL = 0.0436 mol/L
therefore molarity of H₂SO₄ is 0.0436 M
Answer:
10/9
Explanation:
First, let's convert 1/3 and 7/9 so that the have the same denominator. To do this let's find the least common multiple of 3 and 9.
List the multiples of 3 and 9:
3: 3, 9
9: 9
They have a least common multiple of 9
We need to convert 1/3 so it has a denominator of 9:
1/3*3/3 (we can multiply it by 3/3 because any number over itself is 1) = 3/9
s-3/9=7/9
Add 3/9 to both sides to isolate s
s=10/9