<span> <span> The answer to your question is: increase the force applied to the object.
Two items are provided as a basis for that conclusion:
1. According to Newton's Second Law of Motion, the formula for finding force is: F = ma
where F is the force,
m is the mass of an object,
and a is the acceleration of the object.
And 2: work = force x distance or W = F x d.</span></span>
To solve this problem we will apply the concepts related to magnetic flux and induced voltage. This last expression understood as the variation of the magnetic flux over time and, in turn, the magnetic flux expressed as the variation of the magnetic field in a certain area.
Magnetic flux through the circular coil is given as

The induced voltage is the change of the magnetic flux across the time, then

At the same time the magnetic flux through the square coil would be given as,

And the induced voltage EMF will be

Equating both expression we have



Therefore the emf induced in the square coil is 0.23355V
Answer:
The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately 6.674×10−11 m3⋅kg−1⋅s−2. The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys.
50 degrees because the would most likely equal out